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ABSTRACT 

The finite element model has become the standard way in which complex structural 

systems are modeled, analyzed, and the effects of loading simulated. A new method is 

developed for comparing the finite element simulation to experimental data, so the model 

can be validated, which is a critical step before a model can be used to simulate the system. 
An optimization process for finite element structural dynamic models utilizing sensitivity 
based updating is applied to the model updating and damage detection problems. Candidate 
solutions are generated for the comparison of experimental frequencies to analytical 
frequencies, with mode shape comparison used as the selection criteria for the optimal 
solution. The method is applied to spatially complete simulations and to spatially incomplete 
experimental data which includes the model validation of a simple airplane model, and the 

damage localization in composite and steel beams with known installed damage. 
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I. INTRODUCTION 

A.       BACKGROUND 

Finite element models are widely used to predict the response characteristics of 

complex structures in the area of structural dynamics. The models can be very complex 

and use large numbers of degrees of freedom so that the desired level of accuracy will be 

achieved. However, the construction of the models can be an inexact science. Variations 

such as non-homogenity in physical properties within structures, difficulties in 

determining the stiffness of different types of structural joints, and the inability for the 

solution of a finite degree of freedom model to converge to the exact solution of an 

infinite degree of freedom system make the task of constructing an accurate model 

daunting. 

In view of these difficulties with finite element models, methods of model 

updating to improve model correlation with tests have been explored [Ref. 1-3]. Methods 

for model updating are based on the comparison of analytical data from finite element 

models to that of experimentally obtained data from the structures being modeled. 

Dynamic response parameters used for this comparison are the natural frequencies of 

vibration, corresponding mode shapes, and damping behavior. The real question becomes 

how is the dynamic response information fed back into the model to make corrections? 

There are two major difficulties with updating an analytical model. The first difficulty is 

that when dealing with a complex model there are large numbers of variables that can be 

adjusted resulting in a very large search domain. Related to this problem with the search 

process is that there are an infinite number of design variable combination changes that 



will result in a mathematically correct yet non-unique solution for the model system. The 

second difficulty is that the solution time to re-solve the eigenproblem for complex 

models can be quite large and very expensive, which limits the number of variable change 

combinations that can be investigated in a cost effective manner. With these difficulties in 

mind it is imperative that a search routine to update models will minimize iterations and 

therefore cost, as well as provide verifiable and accurate results. 

Once a finite element model has been updated it is used to accurately predict the 

dynamic response characteristics of the modeled structure and to investigate the effect of 

design changes. This allows non-destructive testing of the structure to various simulated 

loads ensuring adequate strength or performance of the structure. Another application of 

the updated model is in the area of localizing structural damage in a structure. Measured 

dynamic response parameters of a structure that is believed to be damaged are compared 

to the updated model. The search process used to update the model is then applied to 

determine where differences between analysis and test occurred, thereby localizing the 

probable area of damage. 

B.       ANALYSIS METHODS 

Dynamic response parameters are generated for the analytical model and the 

actual structure. The parameters experimentally determined from the actual structure are 

the natural frequencies of the structure and the corresponding mode shapes. The 

parameters for the initial analytical model are the natural frequencies and the associated 

frequency sensitivities. Finite element model sensitivities are the first derivative of the 

eigen problem solution set with respect to the design variables under consideration. 



Frequency sensitivities are the basis for a linear approximation to compute the change in 

the natural frequencies of a model based on a change in a given design variable. This 

method of frequency updating greatly reduces the computational time required to 

calculate the results of a change to large finite element models by eliminating the need to 

re-solve the eigenproblem for each iteration. This process of frequency updating has been 

used extensively for model updating and is discussed further in references (1) through (3). 

To search the solution domain for prospective solutions, a constrained 

optimization routine is employed. Optimization theory and techniques are discussed 

further in reference (4). The optimization routine employed searches for the minimum 

value of an objective function which is constructed to minimize the differences between 

the analytical model parameters and the experimental data. This organized approach of 

searching for the optimal combination of design variables minimizes the number of 

combinations that are investigated thereby reducing the computational requirements of 

this process. 

The real difficulty to this method of correcting a finite element model is to 

determine which candidate solution most closely matches the experimental data. Multiple 

combinations of design variable changes can result in the same changes to the natural 

frequencies of the model so the accuracy of the frequencies is not the only evaluation 

factor. An improved method of solution evaluation is to determine the effects on the 

analytical mode shapes and compare them to the experimental mode shapes. This 

comparison of mode shapes is called the Modal Assurance Criterion (MAC) and is 

discussed in reference (5). The MAC is a measure of how closely two mode shapes 



coincide. The candidate solution with a MAC value most close to one when compared to 

the experimental data most closely resembles the experimental case and is selected as the 

optimal solution. 

C.       ANALYSIS APPLICATIONS 

There are two applications of this optimal solution search procedure using finite 

element model sensitivities and frequency differences. The first application of the 

procedure is updating the system finite element model. Model updating correlates the 

baseline model for use for system computations. The second procedure involves damage 

localization using a previously updated model. There are numerous non-destructive 

methods for testing structures but most are limited to surface defects. By comparing the 

change in the vibrational characteristics of a validated system as well as comparing the 

mode shapes the finite element model can be used as a damage localization system for 

internal structure defects. 

1. Model Updating 

Model updating is imperative to verify the accuracy of a finite element model. The 

method that was chosen to update the model was an optimization search utilizing 

sensitivity based frequency updates. Figure 1-1 is a flow diagram of the updating process. 

This method is similar to those as discussed in references (1) to (3) with differences in 

design variable scaling and choice of objective function. The initial step is to develop the 

finite element model of the structure to generate the analytical frequencies and design 

variable sensitivities. The actual structure is also tested to provide the experimental data. 

The objective function is then selected. The objective function is the equation that the 



Develop FEM and Sensitivities Test Actual Structure 

Select Objective Function 

Select Design Variables 

Enter Optimization Loop 
with Different Combinations 
of Design Variables 

Scale Design Variables 
if Necessary 

Solve Optimization Problem 

Update FEM Frequencies and mode 
Shapes for Solution Evaluation 

Calculate MAC 

Repeat Through Design Variable Combinations 

Select Optimal Solution 

Figure 1-1 Optimization Flow Diagram 



optimization process will minimize. The parameters chosen for the objective function can 

vary. In reference (1) the summation of the percentage difference in the system 

frequencies and the absolute change in the design variables were chosen. In reference (2), 

differences in the frequencies, the mode shapes and the static deflection were chosen. For 

this thesis two objective functions were investigated. The first was a scaled sum of the 

percentage difference in the frequencies added to the sum of the percentage change of the 

design variables during the domain search. The second type of objective function is the 

sum of the change in design variables during the domain search constrained by 

maintaining the difference in the analytical and experimental frequencies below a chosen 

tolerance. 

The design variables are chosen based on the specifics of the model and the 

structure. These could be material property values or assumed values of joint stiffness or 

any other variable which was chosen with some level of uncertainty. At this point the 

optimization loop is entered. Combinations of the design variables are chosen so that all 

possible combinations are investigated. These type of search is discussed in reference (6). 

This type of search pattern will result in 2n-l iterations, where n is the number of design 

variables chosen. This drives the use of less design variables to minimize computation 

time. 

If the design variables are of differing magnitudes they should be scaled to be the 

same size. This will reduce the chance that a single variable will dominate the 

optimization process. The scaled design variables are used with the frequency 

sensitivities to update the objective function. The optimization process uses a 1st order 



search routine to find the minimum objective function value within the search domain. 

The optimized design variables are then fed back into a routine to solve the eigenproblem 

generating the natural frequencies and mode shapes for this variable combination. The 

mode shapes are compared to the experimental data by computing the MAC and are 

summed for the modes of interest. This process is repeated for all the combinations of the 

design variables. The combination of design variables with the highest MAC value is 

chosen as the optimal solution. 

2.        Damage Localization 

The process chosen for damage localization utilizes the same basic optimization 

routine as model updating with a different search logic. This method is based on the 

premise that any sub-surface defects in the material will be manifested in a finite element 

model as a reduction in the stiffness of the structure. It was assumed that there would be 

no mass loss for this situation. Figure 1-2 is a flow diagram of the damage localization 

process. It differs from the procedures discussed in references (7) through (10) in the 

search methodology and evaluation methods. The process still begins with the 

comparison of the analytical data and the experimental data. The objective function is the 

same as in the validation process. 

The major difference between the model updating process and the damage 

location process is that the design variables considered are the element stiffnesses within 

designated search regions. The search logic is that a selected search region is divided into 

sub-regions. The stiffness of a sub-region is optimized as if it had suffered a reduction 

resulting in the experimentally observed frequency shifts for the damaged case. The 



Develop FEM and Sensitivities 
From Optimized Model 

Test Damaged Structure 

Select Objective Function 

Divide Structure into Regions 

Enter Optimization Loop 

For a Search Region 

Solve Optimization Problem 

Update FEM Mode Shapes for Evaluation 

Calculate MAC 

Repeat Through Each Sub-Region and Overall Region 

Select Most Probable Sub-Region 

Repeat Search within Sub-Region 

Select Optimal Solution 

Figure 1-2 Damage Localization Flow Diagram 



reduced stiffness for that sub-region is fed back into the finite element model to generate 

assumed damage mode shapes. These mode shapes are then compared with the 

experimental mode shapes with the MAC. This process is repeated for all of the search 

sub-regions as well as the overall region of the search. The sub-region with the highest 

summed MAC value is evaluated as the most probable area of damage if the MAC value 

does not exceed that of the entire region. The selection of the most probable sub-region is 

then used to start another search iteration with the smaller region. This process is repeated 

until the damage is localized to a single element of the analytical model or the search 

region is evaluated as more probable then any single sub-region. At this point the most 

probable area of damage is selected. 
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II. THEORY 

A.       FREQUENCY SENSITIVITIES 

A typical dynamic response finite element model is a method to mathematically 

model the response characteristics of a structure. The properties of the structure are 

reduced to the eigenvalue problem for dynamic structural response as given by: 

[K][O>]-[M][<D][A] = 0 (2.1) 

where [K] is the system stiffness matrix, [M] is the system mass matrix, [A] is the 

eigenvalue matrix, and [O] is the eigenvector matrix. [K] and [M] are defined by the 

physical properties of the system including the physical dimensions, mass density and the 

Young's modulus of the materials in the structure. The stiffness and mass matrices are 

nxn in size where n is the number of degrees of freedom within the model. [A] is a nxn 

diagonal matrix which contains the system eigenvalues. [<J>] is a nxn matrix whose 

columns define the mode shapes of the system. The natural frequencies of the system are 

computed from the eignvalue matrix. The ith natural frequency of the system, in Hertz, is 

calculated as follows: 

G*=A (2-2) 

f;=^ (2-3) 

where Xi is the ith diagonal term of the eigenvalue matrix. Equation (2.1) can be 

rearranged and still holds for each individual mode as shown for the ith mode in the 

following: 

[[K]-A1[M]]{<|)i}=0 (2.4) 

11 



Now consider a change in the kth design variable, Vk, which may affect both [K] 

and [M]. Differentiating Equation (2.4) with respect to vk results in: 

3K 

3v, 3v. [M]-\ 
3M 

3v, 
^J+IM-^IM]]^  =0 (2.5) 

Equation (2.5) is then premultiplied by {^}T, the transpose of the ith mode shape, 

resulting in equation (2.6). 

MT 3K 

3v, 

9M 

L3vk. 
{♦,}+MT[M-Wfj4 = 0       (2-6) 

Because of the orthogonality of eigenvectors Equation (2.7) through Equation (2.9) hold: 

[K] = [K]T 

[M] = [M]T 

{^}T[[K]-^[M]] = 0 

(2.7) 

(2.8) 

(2.9) 

Substituting Equation (2.9) into Equation (2.6) eliminates the second term of the left hand 

side. Rearranging terms yields Equation (2.10): 

3^ M1 3K 

3v, 
-X, 

3M 

3v, h} 
(2.10) 

If mass normalized mode shapes are utilized the denominator of Equation (2.10) is equal 

to 1 reducing Equation (2.10) to: 

M 3K 

3v„. 
■k 

3M 

3v,_ (♦.} 
(2.11) 
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Equation (2.11) is then used to calculate the sensitivity matrix, [T], for the analytical 

model. [T] is a nxm matrix where n is the number of modes used and m is the number of 

design variables considered. The sensitivity matrix is used to approximate the frequency 

shift of the analytical system within the optimization loop for small changes in the design 

variables with Equation (2.12): 

{AX}=[T]{Avk} (2.12) 

Where A symbolizes small changes in the eigenvalues and the design variables. 

B. ASSESSING SENSITIVITY ANALYSIS 

Because Equation (2.12) is a linear approximation for a non-linear situation it is 

only valid for small changes in the vicinity of the system eigenvalues and original design 

variable values. A method to assess the applicability of the sensitivity approximation is 

derived in detail in reference (11). The method utilizes second-order sensitivities to 

evaluate if the use of first order sensitivities are appropriate. "The method is based on the 

use of a truncated Taylor Series extrapolation" [Ref. 11: p. 136] and "the Cauchy 

condition for the convergence of a general power series" [Ref. 11: p. 136]. "Analogy to 

the Cauchy ratio test suggests that the convergence of the Taylor series is likely to depend 

on the ratio" [Ref. 11: p. 136]: 
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Where i indicates the mode of interest, j indicates all other modes, and k indicates the 

design variable of interest. The determination of acceptability of the first order sensitivity 

approximation is based on the value of j^. "If TJJ is much less than one the approximation 

should be accurate" [Ref. 10: p. 136]. 

C.       OPTIMIZATION 

"The purpose of numerical optimization is to aid in rationally searching for the 

best design to minimize a function of the design variables to satisfy constraints" [Ref. 4: 

p. 1]. In this instance the purpose is to match the dynamic response of a finite element 

model to that of the experimental response of the system of interest. "The general 

problem statement for a non-linear constrained optimization problem is" [Ref. 4: p. 9]: 

Minimize:       F(X) Objective Function (2.15) 

Subject to: 

gj(X)<0        j = l,m 

hk(X) = 0       k=l,p 

Xi'<Xi<XiU   i=l,n 

X, 

Inequality Constraints 

Equality Constraints 

Side Constraints 

(2.16) 

(2.17) 

(2.18) 

where   X = 

X2 

X, 

x„ 

Design Variables 
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The vector X is the vector of design variables. The constraint equations are used to bound 

possible solution combinations to meet the requirements of the given situation. 

Most optimization algorithms require that an initial set of design variables, X°, be 

specified. Beginning from this starting point, the design is updated iteratively. This 

process can be written as: 

Xq = Xq4 + aSq (2.19) 

where q is the iteration number and S is a vector search direction in the design space. 

"The scalar quantity a defines the distance that we wish to move in direction S" [Ref. 4: 

p. 10]. The updated values of X are used to calculate the value of the objective function 

for each iteration. The search direction is chosen to decrease the value of the objective 

function while staying within the constraints of the system. The process continues until 

the objective function converges to a local minimum and the optimal solution is 

localized. 

There are many methods to choose the search direction, S The search direction 

selected for this thesis is the steepest descent method. In the steepest descent method the 

search direction is taken as the negative of the gradient of the objective function. That is 

at iteration q: 

Sq = - VF(Xq) (2.20) 

"This Sq vector is used in Equation (2.19) to perform a one-dimensional search" [Ref. 4: 

p. 88]. 
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D.       OPTIMIZATION SCALING 

For the model optimization problem the design variables being considered can 

have greatly different magnitudes. To ensure that each design variable has the same effect 

on the optimization process it is beneficial to scale the design variables. "Scaling has the 

effect of putting each variable on the same basis in the sense that a 1 percent change has 

roughly the same meaning for each variable" [Ref. 4: p. 100]. The method of scaling 

chosen was to scale variables to the value of the smallest design variable. This results in 

the construction of a nxn diagonal scaling matrix, Sc. The kth diagonal term of the scaling 

matrix is X^/X^. Scaled design variables can then be calculated with the following: 

|X}=[SC]{X} (2.21) 

where the tilde symbolizes scaled values. Rearranging Equation (2.21) results in: 

{X}=[SC]
_1{X} (2.22) 

Applying the scaling logic of Equation (2.22) to the particular function stated in Equation 

(2.12) results in the following: 

{AX}=[T][Sc]
_,{Avk} (2.23) 

Combining the sensitivity matrix and the inverted scaling matrix results in the scaled 

change in frequency function used in the objective function for the scaled optimization 

problem: 

{A?i}=[f]{Avk} (2.24) 
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E.        DESIGN VARIABLE COMBINATIONS 

When conducting an experiment to see how design variables effect a given 

function, "a logical way to manage the experiment is to change one design variable at a 

time, which is called the classical one-factor-at-a-time (1-F.A.A.T.) technique" [Ref. 6: p. 

51]. This method, although orderly and thorough, does not take into account any 

interrelation between design variables, or allow for multiple factors to be considered 

together. Another approach to this experiment is to examine k factors, in n observations, 

with each factor at two levels. "This approach is called the 2-level factorial design" [Ref. 

6: p. 54]. By two levels it is meant that a particular factor is either considered at a low 

level or a high level for each observation. "The total number of observations in such an 

experiment is determined by taking the number of levels (2) to the power of the number 

of factors (k) such that n = 2k" [Ref. 6: p. 54]. "In this design we look at all possible 

combinations of the two level design variables" [Ref. 6: p. 54]. 

In the context of this thesis there are minor modifications to the 2-level factorial 

design. The first is that the low level of the design variable means that it is not adjusted. 

The high level of the design variable means that it is adjusted. To symbolize whether a 

design variable is considered or not a binary notation is used. A 0 means the design 

variable is not considered while a 1 indicates that the design variable is considered. With 

these symbols a table can be constructed to describe the design variable combinations for 

the experiment. Table 2-1 is an example of how a experiment would be set up for three 

design variables. Three design variables for two levels would result in 2 or 8 
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Observation Design Variable Design Variable Desig n Variable 

(1) (2) (3) 

1 0 0 0 
2 1 0 0 
3 0 1 0 
4 1 1 0 
5 0 0 1 
6 1 0 1 
7 0 1 1 
8 1 1 1 

Table 2-1 2-Level Factorial Test, "After [Ref. 6: p. 58]" 

observations. Some observations on the 2-level factorial test table design from reference 

(6): p. 57 are included: 

"Note the pattern in the columns in Table 2-1. The first column varies the 
O's and l's alternately, while the second column varies them in pairs and 
third in fours. In general, we can reduce the pattern of the digits in any 
column to a formula: The number of like digits in a set = 2n~ where n is 
the column in the matrix. 

forn=l,21"1 = 2°=l 
for n =2, 22"1 = 21 = 2 
for n =3, 23"1 = 22 = 4 
for n =4, 24"1 = 23 = 8 , etc. 

The convention of alternating O's and l's produces an order in the 
experimental design, which is useful in the design and analysis. It is called 
Yates order after the British statistician." 

In the context of the finite element updating problem, the first combination listed in Table 

2-1 is the original model and as such is not considered. Therefore the number of design 

variable combinations to be considered for model updating is 2 -1 with k being the 

number of design variables of interest. 
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F.        MODAL ASSURANCE CRITERION 

"The Modal Assurance Criterion (MAC) is a scalar constant relating the causal 

relationship between two modal vectors" [Ref. 5: p. 113]. For this thesis the MAC is used 

as a means to compare analytically and experimentally obtained vibrational mode shapes. 

The MAC will have a value between 0 and 1. A value of 0 indicates that the two modal 

vectors are not consistent while a value of 1 indicates the modal vectors are consistent. 

The method of calculating the MAC for comparing the ith mode of the analytical (a) 

system to the ith mode of the experimental (x) system is: 

MAC = (2.25) 
|M%|fc}%| 

The individual MAC values for each vibrational mode of interest are then summed to 

provide a scalar "rating" of the solution. The iteration with the highest summed MAC 

rating is then selected as the optimal solution. 

The following chapters will demonstrate the application of these theories. 

Optimization theory with scaling will be applied to both model updating and damage 

localization based on sensitivity updating of the finite element model. The applicability of 

the sensitivity updates will be evaluated with the Cauchy ratio. The design variable 

combinations are chosen with the 2-level factorial method. The results of the search 

iterations will be evaluated with the MAC value. 
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III. COMPUTER SIMULATIONS 

The investigation of model updating and damage localization was initially 

conducted with computer simulations. A baseline finite element model was created to be 

used as the analytical model. The baseline model was then modified by making changes 

to specific model parameters, yielding a simulated experimental model with known 

differences in the design variables. By comparing the baseline model and the simulated 

experimental model the operation of the optimization and localization processes could be 

studied and verified. The types of models, design variables modified, and the procedures 

for the simulations will be discussed in further detail in this chapter. 

A.       BEAM MODEL UPDATING 

The initial process to be examined is model updating. In order to determine the 

size of design variable changes for which frequency sensitivity calculations are 

appropriate and to verify optimization processes a simple finite element model was 

utilized. This baseline model was constructed for an aluminum beam with damping 

neglected to simplify the model. This model considered two degrees of freedom at each 

node, one translation and one rotation, and contained eight elements and nine nodes. The 

boundary conditions for the test cases was fixed-free, that is the left end of the beam was 

clamped. The material was assumed to have homogenous physical properties. Specific 

beam data is included in Appendix A. 

In the simple beam model, two model parameters were chosen to be manipulated 

as the design variables for the optimization investigation. The design variables chosen 

were the Young's modulus and the mass density for the entire beam. The optimization 
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process is developed to determine what set of changes to the design variables in the finite 

element model would result in an "updated" analytical model matching the dynamic 

response of the simulated experimental model. The values of the two design variables for 

the baseline finite element model will be referred to as the original values of the design 

variables and the known changes to the design variables will be referred to as the design 

variable errors. The original values of the design variable were either reduced, held 

constant, or increased, in all possible combinations, to generate the simulated 

experimental data. For two design variables, examined at three levels, there are 32 or nine 

possible combinations. The combination with no changes to either design variable is 

trivial, so eight different design variable error combinations were investigated. For 

example, one error combination was a decrease in density while modulus was held 

constant. The use of different error combinations was to determine if the type of errors in 

the design variables affected the optimization solution. The design variable errors for the 

simulated experimental models were at least five percent of the original values to ensure 

that a noticeable difference in the dynamic response parameters was observed. The 

different aspects of the optimization process were investigated with multiple test cases. 

Each test case examined a particular solution aspect and consisted of eight trials, one for 

each of the design variable error combinations. This allowed the isolation of the effects 

for the items changed from test case to test case. 

1.        Sensitivity Linearity Assessment 

The first and foremost issue which must be validated in the optimization process 

is the sensitivity-based update of the finite element model. The sensitivity matrix is used 
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to approximate the change to the natural frequencies of the analytical system based on a 

change to designated design variables. The relation for the frequency change was 

identified in Equation (2.12). The updated analytical natural frequencies are computed as 

shown in Equation (3.1). Note that the second term in the right hand side is the frequency 

change as identified in Equation (2.12). 

{f
u

a}={fa}+[T]{ADV} (3.1) 

where {f} indicates the system natural frequencies and DV represents design variables. 

This approximation for the updated analytical natural frequencies is used in the numerical 

optimization process to evaluate possible design variable values. The purpose of using 

this approximation is to reduce the computational time to accomplish the optimization. If 

the approximation was not used, the numerical optimization routine would have to re- 

solve the eigenproblem for every iteration, increasing the computational time required to 

solve the problem. With this in mind, it is imperative that the linearity of the sensitivity- 

update be assessed to ensure that it is accurate within the solution domain. 

The range of validity for the frequency sensitivity-update approximation was 

assessed for the aluminum beam test model in 2 fashions both of which will be discussed 

in following sections. The first method was a direct comparison of the updated natural 

frequencies calculated from Equation (3.1) to that of the eigenproblem re-solve for a 

given set of errors to the design variables. The design variables were varied up to plus or 

minus 10 percent from the original values in the finite element model. Figure 3-1 and 

Figure 3-2 are plots of the absolute value of percentage error between the eigenproblem 

re-solve and the sensitivity based frequency update for the first two natural frequencies of 
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Error for Sensitivity update for 1 st Natural Frequency 

% Change in Modulus -10     -10 
% Change in Density 

Figure 3-1 Absolute Value of Percentage Error for 1st Natural Frequency Update 

Error for Sensitivity update for 2nd Natural Frequency 

% Change in Modulus -10     -10 
% Change in Density 

Figure 3-2 Absolute Value of Percentage Error for 2nd Natural Frequency Update 
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the beam versus the percentage changes to the design variables. Both cases have a 

maximum error of approximately one percent. An item to notice in the figures is that the 

error is at the highest level when the design variables are adjusted in the opposite fashion. 

This is because the changes in design variables have opposite effects on the system 

frequencies. For example, when the modulus is increased the frequencies increase, and 

when the density increases the frequencies decrease. Therefore when the design variables 

are shifted in opposite directions, one positive and one negative, the overall change to the 

natural frequencies is larger in magnitude and the corresponding error is larger. 

Conversely when the design variables are shifted in the same direction, either both 

positive or both negative, the overall change to the natural frequencies is smaller because 

the changes cancel and the corresponding error is also smaller. This indicates that the 

approximation error is based more on the magnitude of the change to the natural 

frequencies themselves as opposed to the magnitude of the changes to the design 

variables. The error levels of approximately 1 percent calculated by direct comparison of 

frequencies is considered acceptable for the optimization procedure. 

The second method of verifying the acceptability of the sensitivity updating 

approximation was to calculate the Cauchy ratio equivalent for the model. This ratio was 

defined in Equation (2.13) and Equation (2.14) included in Chapter II on page 13. The 

ratio uses the magnitude of the second term in a Taylor series expansion to determine if 

using the first term alone is a valid approximation This ratio is computed for a specific 

design variable change in the model, and for all of the natural frequencies of interest. The 

acceptability measure for this method is if the ratio has a value much less than one. This 
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ratio was calculated here for the first two natural frequencies and up to 20 percent 

changes in the density and modulus. This method of assessment does not take into 

consideration a combination of changes to both design variables simultaneously. The 

single largest calculated ratio values are included as Table 3-1. The ratio exceeds 0.1 

when the mass density changes by eight percent and when the modulus changes by 12 

percent, both for the second natural frequency. The question with this validation method 

is what value of the ratio actually indicates that the accuracy limits have been exceeded? 

Reference (11) only refers to a value of much less than one. Without a well defined 

definition of an acceptable value the results of this method of assessment are open to 

interpretation. 

1st Frequency 2nd Frequency 
Percent Mass                  Modulus Mass               Modulus 
Change Density Density 

1 0.0083                  0.0072 0.013                0.0091 
2 0.017                    0.014 0.026                 0.018 
3 0.022                    0.025 0.027                 0.039 
4 0.033                    0.029 0.052                 0.036 
5 0.041                     0.036 0.064                 0.045 
6 0.050                    0.043 0.077                 0.054 
7 0.058                    0.070 0.090                 0.064 
8 0.066                    0.058 0.103                  0.073 
9 0.074                    0.065 0.115                 0.082 
10 0.083                    0.072 0.130                 0.091 
11 0.091                    0.080 0.142                 0.099 
12 0.099                    0.086 0.155                 0.109 

Table 3-1 Cauchy Ratio Equivalent Calculated Values 

Based on the results of the numerical linearity assessment ("Method 1", above), 

that up to a 10 percent change in either or both of the design variables is acceptable, the 
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maximum ratio value for the 10 percent shift is chosen as the acceptable ratio value. This 

value is 0.13. In view of the two methods of evaluating the sensitivity updating 

approximation, the error of the approximation is at an acceptable level within a limit of 

10 percent change to either or both design variables. 

2.        Initial Optimization Procedures 

As mentioned above, different aspects of the optimization procedure were 

considered in order to determine their effect on the process. The first set of test cases 

were intended to validate basic methods of the optimization solution. The test cases for 

this phase of testing considered the first two natural frequencies and both design 

variables, mass density and modulus for the entire beam. Substituting these particular 

variables into Equation (2.12) results in the following expression for the frequency 

changes. 

where f are the natural frequencies, E is Young's modulus, p is mass density, and [T] is a 

2x2 sensitivity matrix. The prescribed errors in the design variables for the simulated 

experimental model were a five percent change to the mass density and a eight percent 

change in the modulus. 

One of the aspects investigated was a possible solution method that did not 

require the iterative optimization process. A direct solution was calculated due to its 

simplicity. The use of the same number of design variables and natural frequencies 

results in a square sensitivity matrix. The square sensitivity matrix allows Equation (3.2), 
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to be solved directly by premultiplying both sides of the equation by the inverse of the 

sensitivity matrix resulting in Equation (3.3): 

fAEl 

■w|S A   ,    ,-,   ,.,, (3.3) 
API 

Although this method is quick and mathematically correct, in this instance the solution 

has no physical significance. That is the design variable errors calculated from this 

solution method are of a significantly different magnitude than the known error values. 

This was true whether the design variables were scaled or not. 

Therefore the primary solution method considered was a constrained optimization 

routine, as defined as in Equations (2.15) through (2.18) in Chapter II on page 14. The 

purpose of the optimization routine is to locate the minimum value of an objective 

function subject to imposed constraints. The process begins with a start point within the 

solution domain and then uses an iterative search logic to numerically converge to a 

solution. Some specifics of the optimization process can be modified to alter the results of 

the search. Some items which were considered include: 

• Design variable scaling 

• Alternate objective functions 

• Objective function scaling 

• Solution constraints 

• Iteration start point 

The specifics of these items will be addressed in the following paragraphs. 
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One of the areas for evaluation is whether design variables should be scaled or 

not. Scaling can improve the performance of the optimization routine by modifying the 

problem so that the design variables are of similar magnitudes. For this beam case the 

mass density and modulus differ in magnitude by a factor of 1011 so scaling may be 

beneficial. Design variable scaling is investigated in Test Cases 1 and 2. 

Another item to be investigated is the objective function. The objective function 

used for initial optimization evaluation is of the form: 

n   fx — fa m   ADV 
OF = A*t^^ + B*y^äL (3.4) 

£?    fi" 6 DVk 

where n is the number of frequencies of interest, m is the number of design variables, and 

A and B are scalar multipliers used as weighting factors in the objective function. The 

analytical frequencies in Equation (3.4) are computed using the current state variables and 

Equation (3.1), i.e. at each iteration of the optimization process, the analytical frequencies 

are updated to determine the effect of possible design changes. This process will decrease 

the  difference between  the experimental  and updated analytical  frequencies  until 

convergence  to  the  minimum  value  of the  objective  function  is  obtained.   The 

optimization routine will return the design variable changes required such that the finite 

element model frequencies will match the experimental frequency data. These design 

variable changes are used to calculate the value of optimum design variables by adding 

the changes to the original design variable values. The weighting factors, A and B, are to 

enhance the effect of one term versus the other in the objective function and can be 

altered to determine the effect on the optimization process of either term. Weighting of 
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the objective function terms is investigated in Test Cases 3 and 4. The only constraint 

imposed at this stage was a limit of 10 percent change from the original design variable 

values during the search iterations. The starting point values to begin the iterative search 

were the original design variable values for all of the trials within each test case. 

a. Test Case 1-2 Design Variables, No Scaling 

The scalar multipliers in the objective function for this case were A = 1 

and B =1. There was no scaling of the design variables. The results for Test Case 1 are 

included numerically in Appendix A as Table A-l and graphically in Figure 3-3. The axes 

for the plot are the percentage changes in the two design variables from the original 

values of the finite element model. The set of points labeled as "Prescribed" are the eight 

combinations of known design variable errors that comprise the simulated experimental 

trials. The set of points labeled as "Solution" are the changes to the original design 

variable values that were returned as the optimized solution by the optimization routine. 

Lines connect the data point of a known error to the data point of the corresponding 

optimization solution. The distance between the two data points is a measure of the 

accuracy of the solution. The shorter the distance the better the solution matched the 

known error condition. If a solution was within 2.5 percent of the known error for both 

design variables is was judged as reasonable and noted with a ellipse enclosing both the 

error data point and the solution data point. The start point for all of the trials was at the 

original design variable values and is plotted at the origin of the axes. 

Only two of the eight solutions are within a reasonable tolerance from the 

known error values. These are not acceptable results. As shown in Figure 3-3 all of the 

30 



Test Case 1 

3 
T3 
O 
s 
v 
D> 
c 
(0 

JC 
Ü 
0> 
Bl 
(0 
*■" 

c 
a> 
ü 
k. 
a> 
a. 

-46- 

-40- 

« Prescribed 

■ Solution 

• Start Point 

Percentage Change Density 

Figure 3-3 Test Case 1 Solution Results 

solutions lie on the horizontal line corresponding to the zero value of the vertical axis. 

This indicates that the modulus was not altered by any significant amount for any of the 

trials. The optimization routine minimized the frequency differences between the 

analytical and experimental models by only manipulating the mass density of the beam. 

This is probably due to the large difference in magnitudes between the two design 

variables. 

The results from Test Case 1 indicate the need to scale the design variables 

to equalize their effect on the design optimization process. The optimization process will 

not operate correctly for this situation when the design variables are greatly different in 
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magnitude. A method to correct this deficiency will be addressed in the following test 

case. 

b. Test Case 2-2 Design Variables, With Scaling 

Test Case 2 was used to verify the effectiveness of scaling the design 

variables to correct the solution deficiency identified in Test Case 1. The scaling method 

chosen was to scale the modulus value down to the magnitude of mass density. This also 

results in the need to scale the sensitivity matrix so that Equation (3.2) remains valid. The 

scaling matrix for this situation and the general scaling procedure is demonstrated in the 

following group of equations. 

[£   n 
[SJ=  E (3-5) 

0    1 

{ADVs}=[Sc]{ADV} (3.6) 

Where [Sc] is the scaling matrix, and the subscript s indicates scaled values. This scaling 

results in a scaled design variable vector that has all terms on the same basis. Rearranging 

Equation (3.6) and substituting into the change in system frequency, Equation (2.12) 

results in: 

{ADV} = [Sc]~'{ADVs} (3.7) 

{Afa}=[TlScf{ADVs} (3.8) 

The sensitivity matrix can be combined with the scaling matrix to form the scaled 

sensitivity matrix and result in the scaled version of the frequency change equation: 

[TsHTjSj1 (3-9) 
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{Afa}=[Ts]{ADVs} (3.10) 

Equation (3.10) is then used for frequency updating for the scaled design variable 

problem in Equation (3.1). This scaling logic is valid for other cases and can be applied 

for larger design variable vectors by increasing the number of terms in the scaling matrix. 

For Test Case 2 the scalar multipliers in the objective function were the 

same as for Test Case 1. The results for Test Case 2 are included numerically in 

Appendix A as Table A-2 and graphically in Figure 3-4. 

Test Case 2 
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Figure 3-4 Test Case 2 Solution Results 

The results for Test Case 2 show improvement over the results for Test 

Case 1. Four of the eight trials yielded reasonable solutions, but the overall accuracy is 

still not acceptable. Scaling of the design variables and the sensitivity matrix was 
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effective in that it allowed both design variables to be shifted during optimization. The 

modulus was shifted by as much as five percent for one of the trials demonstrating that 

modulus had been manipulated during the optimization process. Although scaling 

allowed both design variables to be manipulated, this in itself did not guarantee that all of 

the trials in the test case would achieve successful results. Scaling will be used for all 

subsequent test cases. 

c. Test Cases 3 and 4 - Objective Function Weighting 

The next test cases investigated the effects of changing the relative 

weighting of the objective function terms. This was to determine if emphasizing the 

frequency term versus the design variables term would improve optimization accuracy. 

Different values for A and B, the scalar multipliers in the objective function, were used 

for evaluation. A values were varied such that, 5 < A < 50, while B was held constant at 

B = 1. Test Case 3 uses A = 10 and B = 1. The results for Test Case 3 are included 

numerically in Appendix A as Table A-3 and graphically in Figure 3-5. Test Case 4 was 

similar to Test Case 3 except that the change in variable term of the objective function 

was removed, or B was set to zero. The results for Test Case 4 are included numerically 

in Appendix A as Table A-4 and graphically in Figure 3-6. 

The Test Case 3 results have reasonable solutions for four of the eight 

trials. This is not an improvement over Test Case 2. Test Case 4 has reasonable solutions 

for five of the eight trials. This is an improvement over Test Case 2 but the overall 

effectiveness of the optimization is still not at an acceptable level. Test Case 3 is 

inconclusive while Test Case 4 indicates that increasing relative weighting of the 
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Figure 3-5 Test Case 3 Solution Results 
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Figure 3-6 Test Case 4 Solution Results 
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frequency term versus the design variable term in the objective function improves overall 

performance of the optimization routine somewhat. 

3.        Advanced Optimization Procedures 

At this point in the evaluation of the optimization procedure a new method was 

needed to ensure that the prescribed errors could be identified. In previous test cases, both 

design variables were considered simultaneously but not individually. This limitation in 

the search logic contributed to a less than adequate optimization search performance. This 

lack of performance prompted the use of the 2-level factorial algorithm. The 2-level 

factorial approach was discussed in Chapter II, Section E, pages 16-18. In this case with 

two design variables, this approach requires three independent iterations of the 

optimization procedure to search for a single set of prescribed errors. Each independent 

iteration uses a different combination of the two design variables. The first iteration only 

considers the modulus, the second iteration only considers the density, and the final 

iteration considers both modulus and density. The use of multiple independent iterations 

drives the need for some method to evaluate the candidate solutions for the different 

design variable combinations. A comparison of just the natural frequencies themselves 

was not an effective measure for evaluation. This is because the optimization process 

forced the analytical and experimental frequencies to converge whether or not the 

optimized design variable values were the prescribed errors. This is possible because of 

the non-uniqueness of the eigenproblem solution, that is there are an infinite number of 

density and stiffness combinations that will result in the same frequencies. This overlap 

of candidate solutions necessitated that another method of evaluation be developed. 
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The initial method of solution evaluation was to test the orthogonality of the 

updated modes shapes with respect to the simulated experimental mode shapes. When the 

mode shapes are mass normalized the following holds: 

[Of[M][<D] = [l] (3.11) 

where [I] is the identity matrix. After the solution for the optimization process was 

obtained for a design variable combination the eigenproblem was re-solved with the 

optimized design variable values. This generated a set of optimized analytical mode 

shapes. The optimized analytical mode shapes were substituted for the first term of 

Equation (3.11) while the experimental mass matrix and experimental mode shapes were 

input as the remaining terms: 

[a>0]T[Mx][^] (3.12) 

where superscript "o" symbolizes an optimized solution. It was thought that the closer 

that the value of this triple product was to duplicating the identity matrix, the better that 

the optimized mode shapes matched the experimental mode shapes. 

Another factor that was altered for the following test cases was that the number of 

natural frequencies considered was increased from two to four. This was to bring more 

system information into the optimization process. 

a. Test Case 5 - Multiple Design Variable Combinations 

Test Case 5 was used to implement the 2-level factorial algorithm and the 

orthogonality test. The objective function for Test Case 5 was the same as for Test Case 

3, that is the weighting factors were A = 10 and B = 1. The results for Test Case 5 are 

included numerically in Appendix A as Table A-5 and graphically in Figure 3-7. 

37 



Test Case 5 

V) 
3 
3 
T3 o 
5 
o 
O) c n sz 
O 
o 
O) 
(0 
c 
0> 
Ü 
« 

-o 

-46- 

-49- 

10 

« Prescribed 

m Solution 

• Start Point 

Percentage Change Density 

Figure 3-7 Test Case 5 Solution Results 

Test Case 5 has reasonable solutions for five of the eight prescribed error 

combinations. The prescribed error data point for the trial with modulus increased and 

density unchanged is not visible because it and the solution data point are coincident. The 

results for this test case show improvement in the accuracy of the solutions for the trials 

where the error was prescribed to only one of the design variables, such as the case with 

the overlapping data points. This is because the 2-level search algorithm considered 

iterations with each design variable individually, allowing the process to isolate error to a 

single design variable. The overall ability to identify errors did not improve with only one 

reasonable solution for the trials where both design variables had errors. The results of the 

orthogonality check were also studied. The matrix result of the triple product was 
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diagonal as would be expected for similar systems. The diagonal terms were not however 

equal to one. In fact the iterations most closely matching the known differences were not 

necessarily the iterations with diagonal terms closest to one. There was not a recognizable 

pattern within the orthogonality test that could be used to identify the correct solution. 

b.        Test Case 6 - Prescribed Error Effects 

Test Case 6 was used to further study the 2-level search procedure and the 

orthogonality test for solution evaluation. A slight change was made to the prescribed 

design variable errors to see if this affected the results of the optimization procedure. The 

first 5 test cases had used a eight percent error in mass density and a five percent error in 

modulus for the prescribed errors. For the remainder of the test cases the prescribed errors 

were eight percent for modulus and six percent for mass density. For the objective 

function, B = 0, or only the frequency difference term was considered. The results for 

Test Case 6 are included numerically in Appendix A as Table A-6 and graphically in 

Figure 3-8. 

The results for Test Case 6 contain reasonable solutions for six of the eight 

trials. The prescribed error data points for the two trials where density is not changed but 

the modulus is increased or decreased are coincident to the solution data points and are 

not visible. The solutions for the trials were the prescribed errors only affected a single 

variable are excellent. All four of these trials are within one half percent of the prescribed 

errors. The trials with errors to both design variables show improvement as compared to 

the results for other test cases. The trials where the prescribed errors are of opposite sign 

have solutions within two and one half percent of the known values. The trials where the 
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prescribed errors are of different signs do not provide solutions of any quality. The 

orthogonality check results were very similar to that of Test Case 5. The matrices were 

diagonal but again there was no recognizable pattern that could be used to evaluate the 

different candidate solutions for each trial. 
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Figure 3-8 Test Case 6 Solution Results 

c. Test Case 7 - Alternate Objective Function 

Test Case 7 was used to evaluate a different set of objective function and 

optimization constraints to attempt to get viable solutions for the trials that had not been 

converging. The objective function was changed so that only the design variable 

difference term was used, or the A value in Equation 3.3 was set to zero. The frequency 

differences between the analytical model and the simulated experimental data were 

40 



applied in the optimization routine as an inequality constraint. The constraint was that the 

relative frequency differences was not to exceed a specified tolerance. These equations 

for the objective functions and the constraint are shown below: 

OF = B*y^^ (3.13) 
SDVk 

P-fa 

fx tol<0 (3.14) 

The design variables were still limited to a solution domain of ten percent change from 

the original values. 

Another method of solution evaluation was also investigated in this test 

case. The Modal Assurance Criterion (MAC), which was discussed in Chapter II, Section 

F, measures the independence of two mode shapes. The MAC formula, Equation (2.25), 

is utilized to compare the optimum solution mode shapes to the simulated experimental 

mode shapes to determine if they are similar. The MAC is then summed for all of the 

mode shapes to develop a single number with which to rate the candidate solutions. The 

search procedure itself was not altered. The results for Test Case 7 are included 

numerically in Appendix A as Table A-7 and graphically in Figure 3-9. 

The results for Test Case 7 do not show any improvement in the 

optimization procedure. In fact the solutions are less accurate than the results for Test 

Case 6 with only five of the eight trials within reasonable limits of the known errors. The 

prescribed error data points for the two trials where density is not changed but the 

modulus is increased or decreased are coincident to the solution data points and are not 
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Figure 3-9 Test Case 7 Solution Results 

visible. The trials where the prescribed errors are made to a single variable have good 

accuracy. The trials where prescribed errors are made to both design variables are not as 

accurate. When the prescribed error are of the same sign, the solution is not of any value. 

When the prescribed errors are of the opposite sign the solutions are less accurate than in 

Test Case 6. The higher accuracy achieved in Test Case 6 demonstrates that a 

combination of the frequency differences and the design variable changes in the objective 

function, is a better form for the objective function than the design variable changes as 

used in Test Case 7. 

The results for all of the 2-level factorial test cases demonstrate certain 

significant points. The first point is that all of the test cases were very successful at 
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identifying the trials where the prescribed errors are applied to a single design variable. 

The use of all the possible design variable combinations isolates the situations where only 

a single design variable is effected and results in accurate solutions. The second point 

concerns the situation where the prescribed errors are made to both design variables, but 

are of opposite sign. The results for these trials were generally adequate but were not as 

accurate as the trials where the prescribed errors where to only one design variable. This 

is because these trials are in the region of the solution domain with the highest error for 

sensitivity updating. Although the solution process converged to a reasonable answer, the 

error for the sensitivity-based frequency approximation caused optimization solution 

inaccuracy. The final point concerns the trials where the prescribed errors are made to 

both design variables, but are of the same sign. These trials are not very accurate at all. 

This is due to the fact that the prescribed errors to the design variables have opposite 

effects on the system frequencies. The resultant changes to the natural frequencies from 

the errors are not very large, so the optimization routine tends to make small changes to 

the design variables for the solutions in these trials. This results in solutions that are very 

inaccurate. These routine limitations are significant for understanding and applying the 

optimization routine. 

The orthogonality test for solution evaluation had the same results as 

previous test cases. The matrix was diagonal but the highest value was not always the 

known solution. One interesting thing to note is that for the solutions that match the 

prescribed errors orthogonality test had a highest value of approximately 0.815. The 

significance of this value is not understood. The theory of the test dictates that the closer 
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this value is to one the better the solution, but that was not the case. This evaluation 

method assumes that the mode shape scaling for the optimal solution set is the same as 

for the simulated experimental set which is not necessarily the case. 

The MAC test was ineffective for the homogenous test case. This was due 

to the fact that small changes in beam properties over the entire beam have negligible 

effects on the mode shapes. Therefore all of the candidate solutions had the same results 

for the MAC test. The value of the MAC computed for the updated finite element mode 

shapes compared to the simulated experimental mode shapes, was one for all of the 

modes and all of the candidate solutions so the valid solution could not be discerned 

MAC. Further tests are necessary to validate the MAC method of solution evaluation. 

4. Two Region Optimization 

Up to this point the model updating process has been tested on a homogenous 

beam. These tests have provided insight into a simple two design variable case. The need 

for scaling, the effects of objective function weighting, design variable combinations, 

solution limitations, and methods of solution evaluation have been investigated. To 

further test some of the concepts for model updating a test case was run on a more 

complex beam model. Instead of using a homogenous beam and two design variables, the 

beam was divided into two regions and the number of design variables was doubled. The 

density and modulus in the left half of the beam were made independent of the density 

and modulus in the right half of the beam, resulting in four design variables. The assumed 

values for both halves of the beam are the same, but the errors for the simulated 

experimental models are input into only one half of the beam. 
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The optimization process for a four design variable case is essentially the same as 

for the two variable case. The form of the objective function is the same but will have 

more elements to sum in the design variable term. One difference in the process is that 

the number of design variable combinations for each trial of the test case increases. As 

discussed in Chapter n, for the 2-level factorial algorithm with four design variables the 

number of design variable combinations increases to 24-l or 15. This obviously increases 

the time and expense of the model updating computation. 

a.        Test Case 8-4 Design Variables 

Test Case 8 was intended to verify the optimization process for the four 

design variable problem. The 2-level factorial search was again utilized. The prescribed 

errors for the simulated experimental data were made to the left half of the beam model 

while the properties of the right half of the beam were unchanged. The objective function 

considered only the frequency difference terms, that is the B weighting factor in Equation 

(3.4) had a value of zero. Both the orthogonality and MAC methods of solution 

evaluation were calculated. The results for Test Case 7 are included numerically in 

Appendix A as Table A-7 and graphically in Figure 3-9. 

The results for Test Case 8 are excellent. All eight of the trials yielded 

very accurate solutions, with the solution data points virtually coincident with the 

prescribed error data points. The ability to isolate the two halves of the beam improved 

the capability of the optimization process to identify the prescribed errors. The problems 

with the canceling effects for prescribed errors with the same sign were eliminated. This 

is probably due the enhanced ability to focus the effects of a change in an area. With the 
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design variable errors in only half of the beam, the frequency shifts are not as uniform 

through all the modes as the error cases for the homogeneous beam. Because of this, the 

corrections to only half of the beam would be easier for the process to recognize. 
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Figure 3-10 Test Case 8 Solution Results 

The orthogonality method for solution evaluation was not effective for this 

problem. The triple product matrix was diagonal but the values on the diagonal did not 

isolate the known solution. The highest value was not necessarily the correct design 

variable combination nor was there a consistent "correct" value identified such as in the 

homogenous beam cases. 

The MAC method of evaluation was effective in identifying the correct 

solution. All of the trial combinations that matched the correct solutions were the highest 
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MAC value for that trial. The MAC was effective in this case because the error in only 

halve of the beam caused a non-symmetric change to the mode shapes which was easier 

to detect. This demonstrates the effectiveness of the MAC method for solution 

identification as long as the design variables for the optimization process are not 

homogenous over the entire beam or model. 

5.        Model Updating Observations 

The test cases that have been discussed in the previous sections provide 

significant information for the utilization of the optimization procedure for finite element 

model updating. The different aspects that have been investigated with simple beam 

models will allow the procedure to be applied to more complex systems. Significant 

findings include: 

• Sensitivity based updating of finite element models is an effective 

approximation for the change in natural frequencies for small changes in 

design variables. 

• The accuracy of the sensitivity based update appears to be more dependent on 

the amount of the frequency change vice the design variable change. 

• The Cauchy ratio equivalent for sensitivity assessment is not conclusive in this 

case because the guidelines are open to interpretation. 

• Scaling of the design variables is necessary if the variables are of significantly 

different magnitudes. 

• Increasing the relative weighting of the frequency difference term in the 

objective function improves the solution quality. 
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• The 2-level factorial experiment allows the investigation of all design variable 

combinations to improve model error identification. 

• The 2-level factorial experiment is particularly effective for the trials where 

the prescribed errors are applied to one design variable only. 

• The ability of the optimization process to identify differences is dependent on 

how the differences combine to effect the system frequencies. 

• For the homogeneous case, when the prescribed errors to the two design 

variables have opposite signs, the process will converge to a reasonable 

solution but it will not be as accurate because of sensitivity error. 

• For the homogeneous case, when the prescribed errors to the two design 

variables have the same sign, the process does not converge to a reasonable 

solution. 

• The ability of the optimization process to localize errors was improved when 

the design variables and the prescribed errors were divided into sections. 

• The orthogonality method for solution evaluation is not effective because 

there was no discernible trend to indicate the known errors. 

• The Modal Assurance Criterion method of solution evaluation is effective 

when the design variables considered are not applied over the entire structure 

of the model. 

B.        BEAM DAMAGE LOCALIZATION 

The second application of the optimization procedure is damage localization for a 

structure with a updated finite element model in the undamaged state. The damage 
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localization routine builds upon the lessons learned in the model updating process. The 

baseline finite element model to investigate damage localization processes was 

constructed for a composite beam. Damping was neglected to simplify the model. The 

model considered two degrees of freedom at each node, one translation and one rotation. 

The model contained 48 elements, each one inch in length, and 49 nodes. The elements 

are labeled from 1 to 48 and will be referred by number in later sections. The boundary 

conditions for the model were free-free. This resulted in two rigid body modes which 

were ignored in the computations. The material was assumed to have homogenous 

physical properties. Specific beam data is included in Appendix B. 

The damage localization process is based on the premise that any internal damage 

to a structure can be represented in a finite element model as a reduction in the material's 

modulus, or stiffness. It is assumed that there will be no corresponding reduction in mass. 

With this in mind, the experimental data for the damaged condition was simulated by 

reducing the stiffness for effected elements in the baseline finite element model. These 

will be referred to as the prescribed damage conditions. Four different sizes of damage 

were simulated. These ranged in size from one inch to nine inches. Each crack length was 

simulated in the center of the beam and at an off center location to verify the ability to 

localize the damage. The simulated experimental data from the prescribed damage 

conditions provided the damaged system dynamic parameters for comparison to the 

undamaged finite element model. 
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1.        Damage Localization Process 

As stated above the damage localization procedure is an application of the model 

optimization process. For damage localization the optimization process is modified in 

how it searches for model differences. For this application the only design variable 

considered is the modulus of the model. Because there is only one design variable the 

need for the 2-level factorial experiment is eliminated. There is however the need for 

some logical method of conducting a search of the model. A search method will be 

presented following the description of the optimization problem. The objective function 

for the damage localization process is the same as was used for model updating with the 

frequency term weighted. This emphasizes the frequency difference term of the objective 

function. The sensitivity matrix is still used to calculate updated analytical frequencies 

during the optimization process. The first eight modes of vibration are considered for the 

optimization routine and the mode comparison. The two major issues of the damage 

localization routine is developing a logical search plan and determining how to evaluate 

possible solutions. The optimization process will force the analytical frequencies and the 

experimental frequencies to match so that a frequency comparison is not necessarily the 

best measure. The Modal Assurance Criterion (MAC) is again investigated as a means to 

compare possible solutions to the experimental data. 

The damage localization process is characterized by dividing the beam into three 

sectors for investigation. For this model with 48 elements, each sector contained 16 

elements. The modulus of each sector, as well as the entire section, is optimized to match 

the experimental frequencies assuming that the sector is damaged. This optimized 
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damage stiffness for each sector is used to calculate new vibrational mode shapes for the 

model. The optimized analytical mode shapes for the overall length and each sector are 

then compared to the experimental mode shapes with the MAC. The sub-section with the 

highest MAC sum is taken as the most probable region of damage. This most probable 

sector is further divided into three smaller sectors and the process is repeated. This 

process continues until the damage is localized to a single element, or if a region has a 

higher MAC value then any of its three sub-regions, the entire region is selected as the 

area of damage. This process will be represented graphically in Figure 3-11 following a 

detailed description of the process. In this example with 48 elements, no more than 4 

iterations of the search procedure are necessary to reduce the damage to a single element. 

A comment to be made about this procedure is that the location of the optimized stiffness 

value is more important than the value itself. This procedure does not attempt to evaluate 

the extent of damage, just the location of the damage. The first test case will be discussed 

in detail to illustrate the search procedure. Other cases are conducted in the same fashion 

but only the results will be included and discussed. 

2. One Inch Crack 

a. Centered Damage - Elements 24-25 

The first simulated damage case tested was a one inch crack, centered on 

the beam. The finite element model has a node located at the center of the beam so the 

damage affected the elements on both sides of the center node. These elements are 

labeled as elements 24 and 25. The experimental damage data set was simulated by 

reducing the 
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modulus in the two elements for the baseline model. For the first search iteration the 48 

beam elements were divided into three sectors. These sectors are comprised of elements 1 

to 16, elements 17 to 32, and elements 33 to 48. Error in the modulus value was 

calculated with the optimization routine for each of the sectors and the entire beam. The 

results for the first iteration are shown in Table 3-2. Eight modes are considered so the 

maximum possible MAC value is eight. 

Sector 1-16 17-32 33-48 1-48 
Summed 7.9894 7.9983 7.9888 7.9993 

MAC 

Table 3-2 Damage Localization Results, First Iteration, 1 inch Crack, Elements 24-25 

As shown in Table 3-2, the MAC value for the entire beam is the highest 

with the center sector being the next highest. This would seem to indicate the entire beam 

should be taken as the area of damage. On the other hand, in the case of the homogenous 

beam for the model updating application, the MAC was ineffective for evaluation over 

the entire beam. Because of this ineffectiveness over the entire beam the higher rating of 

the overall beam will be discarded and the center section will be taken for the next 

iteration. 

The region for the second iteration contains elements 17 to 32. This region 

is divided into three sectors. With 16 elements the region can not be divided into three 

sectors of the same size. To maintain symmetry the extra element is put into the center 

sector. If there had been two extra elements they would have been put in the two end 

sectors. The sectors for this iteration are comprised of elements 17 to 21, elements 22 to 

27, and elements 28 to 32. The results for the second iteration are shown in Table 3-3. 
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The sector with the highest MAC value is again the center sector. For this iteration the 

sector MAC value exceeds that of the overall region of interest, which would validate the 

decision to ignore a high MAC rating for the first iteration. Based on the highest MAC 

value elements 22 to 27 are chosen as the sector to be expanded for the third iteration. 

Sector 17-21 22-27 28-32 17-32 
Summed 7.9983 7.9992 7.9981 7.9983 

MAC 

Table 3-3 Damage Localization Results, Second Iteration, 1 inch Crack, Elements 24-25 

The region for the third iteration is then divided into the three sectors. 

These sectors contain elements 22 and 23, elements 24 and 25, and elements 26 and 27 

respectively. The results for the third iteration are shown in Table 3-4. 

Sector 22-23 24-25 26-27 22-27 
Summed 7.9989 7.9999 7.9991 7.9992 

MAC 

Table 3-4 Damage Localization Results, Third Iteration, 1 inch Crack, Elements 24-25 

The sub-sector with the highest MAC value is again the center sector. For 

this iteration the center sector MAC value again exceeds that of the overall region of 

interest. The sector with the highest MAC is the region of the simulated damage 

condition for this trial. At this point another iteration could be run by adding a third 

element to elements 24 and 25 so that the region could be divided into thirds. 

This initial trial demonstrates that the idea of subdividing the beam into sectors 

and then evaluating the sectors until a probable region of damage is identified displays 

some promise. The use of the MAC value as the solution evaluation appears to be an 
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effective tool for this application. However, the overall beam for the first iteration should 

not be selected because of the difficulty with the homogenous beam shapes. 

Figure 3-11 shows pictorially how the search procedure flows from the 

entire beam to smaller sectors. For the simulated damage condition of a one inch centered 

crack there are three iterations. The first iteration considers the entire beam and three 

sectors of 16*elements. After the first iteration the center sector is expanded into three 

smaller sectors with either five or six elements. Following the second iteration the center 

sector is again expanded into three smaller sectors with two elements apiece. This method 

of searching a beam model will quickly reduce the beam into small sections. 
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Figure 3-11 Region Expansion, 1 inch Crack, Elements 24-25 
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b. Off Center Damage - Element 40 

To verify that the search logic was valid on damage away from the center 

of the beam and to eliminate any effects of symmetry, off center damage condition was 

simulated. The damaged experimental data set was simulated by reducing the stiffness in 

element 40 of the baseline model. The search procedure was identical to that used for the 

centered crack. Results for this case are included in Table 3-5. The highest MAC value is 

highlighted for each iteration and shows the subsection chosen for the next iteration. 

Damage in Element 40 

Sector 1-16 17-32 33-48 1-48 
1st Iteration 7.9994 7.9997 7.9998 7.9997 

MAC Values 

Sector 33-37 38-42 43-48 33-48 
2nd Iteration 7.9998 7.9999 7.9997 7.9998 
MAC Values 

Sector 33-37 38-42 43-48 33-48 
3rd Iteration 7.9997 7.9997 7.9997 1.9999 
MAC Values 

Table 3-5 Damage Localization Results, 1 inch Off Center Crack 

The damage localization routine identified the beam section from elements 

38 to 42 as the area of probable damage. This search selected more elements than the 

prescribed damage for the simulated experimental data, but the selected region did 

include the correct location of the damage. The search did reduce the 48 inch beam to a 

probable damage region of five inches in length which is a large improvement in reducing 

the area that would need to be further investigated 
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3.        2.25 Inch Crack 

a.        Centered Damage - Elements 23-26 

The next set of tests were for a crack length of 2.25 inches. The prescribed 

damage for the simulated experimental data set affected the first two elements on either 

side of the center node. These elements are numbered 23 to 26. The search procedure 

results are included in Table 3-6. 

Damage in Elements 23-26 

Sector 1-16 17-32 33-48 1-48 
1st Iteration 7.9851 7.9986 7.9847 7.9981 

MAC Values 

Sector 17-21 22-27 28-32 17-32 
2nd Iteration 7.9976 7.9997 7.9974 7.9986 

Elements 17-32 

Sector 22-23 24-25 26-27 22-27 
3rd Iteration 7.9982 7.9991 7.9986 7.9997 

Elements 22-27 

Table 3-6 Damage Localization Results, 2.25 inch Centered Crack 

These search procedure identified elements 22 to 27 as the region of 

probable damage. The region is again larger than the known damage but does include the 

elements with the prescribed damage for the experimental case. To determine if the 

process could discern the damage to a smaller region a fourth iteration was run was a 

different region. Elements 20 to 29 were chosen so that the center section, elements 23 to 

26, could be isolated. The results for the fourth iteration are included as Table 3-7. The 

process did identify elements 23 to 26 as the most probable region of damage 
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Damage in Elements 23-26 

Sector 20-22                 23-26                  27-29 20-29 
4th Iteration 7.9980              7.9998                7.9980 7.9988 
MAC Values 

Table 3-7 Damage Localization Results, 4th Iteration, 2.25 inch Centered Crack 

b.        Off Center Damage - Elements 30-31 

For this test condition the prescribed damage for the simulated 

experimental data set affected the elements numbered 30 and 31. A fourth iteration was 

again included to attempt to isolate the known damage. The search procedure results are 

included as Table 3-8. 

Damage ; in Elements 30-31 

Sector 1-16 17-32 33-48 1-48 
1st Iteration 7.9988 7.9995 7.9993 7.9994 

MAC Values 

Sector 17-21 22-27 28-32 17-32 
2nd Iteration 7.9986 7.9994 7.9998 7.9995 
MAC Values 

Sector 22-23 24-25 26-27 22-27 
3rd Iteration 7.9991 7.9994 7.9994 7.9998 
MAC Values 

Sector 26-28 29-31 32-34 26-34 
4th Iteration 7.9990 7.9999 7.9992 7.9995 

Elements 26-34 

Table 3-8 Damage Localization Results, 2.25 inch Off Center Crack 

The first three iterations isolate the region of damage to elements 28 to 32 

which does include the region with prescribed damage for the simulated experimental 
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data. The fourth iteration reduces the most probable region of damage to elements 29 to 

31 further isolating the prescribed damage. This indicates how the selection of the search 

region by the analyst is significant effects the ability to locate damage. The sectors need 

to be set up so that the damage is within a sector. This will probably require that a model 

be tested numerous times with different starting regions. 

4.        4.5 Inch Crack 

a.        Centered Damage - Elements 22-27 

The next set of tests were for a crack length of 4.5 inches. The centered 

damage condition effected the first three elements on either side of the center node. The 

prescribed damage, the reduction of modulus, was made in elements numbered 22 to 27 

to generate the simulated experimental data set. The search procedure results are included 

in Table 3-9. 

Damage in Elements 22-27 

Sector 1-16 17-32 33-48 1-48 
1st Iteration 7.9942 7.9997 7.9941 7.9990 

MAC Values 

Sector 17-21 22-27 28-32 17-32 
2nd Iteration 7.9983 8.000 7.9982 7.9997 
MAC Values 

Sector 22-23 24-25 26-27 22-27 
3rd Iteration 7.9991 7.9995 7.9993 8.000 
MAC Values 

Table 3-9 Damage Localization Results, 4.5 inch Centered Crack 

This test selected elements 22 to 27 as the region of probable damage. This 

is the prescribed damage condition for this test. The method did stop the search in the 
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third iteration by identifying that the larger region was the area with the highest MAC. 

This allows the procedure to identify damage conditions larger than one or two elements. 

b.        Off Center Damage - Elements 5-8 

The prescribed damage for the simulated experimental data set affected the 

first elements 5 to 8. A fourth iteration was included to better isolate the prescribed 

damage condition. The search procedure results are included as Table 3-10. 

Damage in Elements 5-8 

Sector 1-16 17-32 33-48 1-48 
1st Iteration 7.9987 7.9930 7.9854 7.9946 

MAC Values 

Sector 1-5 6-11 12-16 1-16 
2nd Iteration 7.9973 7.9989 7.9961 7.9987 
MAC Values 

Sector 6-7 8-9 10-11 6-11 
3rd Iteration 7.9946 7.9946 7.9946 7.9989 
MAC Values 

Sector 1-4 5-8 9-12 1-12 
4th Iteration 7.9965 7.9999 7.9965 7.9989 
MAC Values 

Table 3-10 Damage Localization Results, 4.5 inch Off Center Crack 

The first three iterations isolate the most probable damage condition to 

elements 6 to 11 which overlaps the prescribed region of damage. The fourth iteration 

reduces the most probable region of damage to elements 5 to 8 which is the prescribed 

damage. The fourth iteration again indicates that the process performance is based on 

selection of the search sectors. 
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5.        9 Inch Crack 

a. Centered Damage - Elements 20-29 

The next set of tests were for a crack length of 9 inches. The centered 

damage condition affected the first five elements on either side of the center node. The 

prescribed errors were made to these elements which are numbered 20 to 29. The search 

procedure results are included in Table 3-11. 

Damage in Elements 20-29 

Sector 1-16 17-32 33-48 1-48 
1st Iteration 7.9938 7.9997 7.9936 7.9994 

MAC Values 

Sector 17-21 22-27 28-32 17-32 
2nd Iteration 7.9986 7.9997 7.9987 7.9997 
MAC Values 

Sector 22-23 24-25 26-27 22-27 
3rd Iteration 7.9994 7.9996 7.9994 7.9997 
MAC Values 

Table 3-11 Damage Localization Results, 9 inch Centered Crack 

The second iteration of the process selected elements 22 to 27 or the entire 

region. At this point a decision was made to continue to the smaller region to determine if 

a more conclusive solution could be achieved. The third iteration selected the region with 

elements 22 to 27. This could indicate that the damage is in those six elements. The 

results of the second iteration seem to indicate that the damaged area is larger than the 

individual sectors. Because of the conflicting indications from the two iteration it was 

decided to change the search region to investigate larger sectors. Another test which 

included elements 1 to 29 identified elements 20 to 29 as the area of probable damage. 
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b.        Off Center Damage - Elements 37-45 

The off center damage case for this crack size was simulated by reducing 

the modulus for elements 37 to 45 in the baseline model generating the simulated 

experimental data. The search procedure results are included as Table 3-12. 

Damage in Elements 37-45 

Sector 1-16 17-32 33-48 1-48 
1st Iteration 7.9385 7.9727 7.9989 7.9810 

MAC Values 

Sector 33-37 38-42 43-48 33-48 
2nd Iteration 7.9868 7.9954 7.9912 7.9989 

Elements 33-48 

Table 3-12 Damage Localization Results, 9 inch Off Center Crack 

The second iteration identifies elements 33 to 48 as the region of most 

probable damage. For these results the next step would be to offset the search pattern to 

better define the region with the prescribed damage conditions. 

6.        Damage Localization Observations 

The test cases for damage localization that have been discussed in the 

previous sub-sections provide significant information for the utilization of the 

optimization procedure for finite element model damage localization. Significant findings 

include: 

• The process of dividing the model into sub-regions for examination provides a 

logical method for the damage search process. 

• The search process has the ability to identify the region most probably 

containing the damage down to a single element. 
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• The inclusion of the overall region in the sector comparison provides a means 

to stop the damage search process and allow detection of damage to more than 

one or two elements. 

• The MAC method of solution evaluation is an effective evaluation method 

although the results for first iteration may falsely indicate the entire model. 

Because of the ineffectiveness of the MAC for homogenous cases this 

indication is to be ignored. 

• The search process is effected by the selection of the start regions. The overlap 

of damage into more than one sector can and will cause the results to be 

contradictory. 

• When results are contradictory, new regions should be identified to begin a 

new series of search iterations. 

The following chapter will discuss the application of the lessons demonstrated for 

both model updating and damage localization with the simulated experimental data to 

actual experimental pieces. 
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IV. EXPERIMENT 

The second phase of the investigation of model updating and damage localization 

procedures consisted of experimental test cases. This was to apply the observations from 

Chapter III to determine the effectiveness of the processes for both applications. A simple 

airplane model was used to study the model updating process. Continuous carbon 

fiber/epoxy composite beams were tested for the damage localization problem. An 

undamaged composite beam and a composite beam with a known 2.25 inch delamination 

were used for the analysis. A separate test case using a steel beam was also used to study 

the damage localization process. The steel beam was tested in the undamaged condition 

to update the finite element model. The beam was then damaged and tested. The specifics 

of the experimental cases will be discussed in greater detail in this chapter. 

A.       EXPERIMENTAL MEASUREMENT 

Planning was necessary to determine the most effective measurement techniques 

for data collection prior to the actual measurements. All of the vibration tests were similar 

in configuration with only the number and locations of the response points differing 

between samples. A free-free arrangement was used for all of the test articles to eliminate 

any effects of boundary conditions for the finite element models. The test articles were 

suspended with light weight filament tackline and rubber bands. This resulted in rigid 

body modes which were at much lower frequencies than the observed flexible vibrational 

modes. Impulse excitation was used to generate dynamic repines by striking the test 

articles with a instrumented hammer. A load cell in the hammer measured force input, 

while accelerometers mounted on the test articles measured the resulting acceleration. 
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Only out of plane translational response was measured. The response locations were 

chosen to maximize the number of the vibrational modes that would be observable in the 

test data. 

The system information was processed with a dynamic signal analyzer and IDEAS 

test software which generated the frequency response functions. Multiple driving points 

and a single response point were used to develop one row of the system response matrix. 

A single degree of freedom polynomial curve fit was then used to generate the 

experimental mode shapes from the observed response data. Ensemble averaging was 

employed to smooth noise effects in the measured frequency responses. Test equipment 

and experimental setup are detailed in Appendix C. 

B.        SPATIALLY INCOMPLETE DATA 

The computer simulations in the previous chapter demonstrated that the 

optimization processes could effectively be used to update a finite element model or to 

localize damage. One unrealistic aspect of the computer simulations for these processes is 

that the modal information provided for the experimental data sets was spatially 

complete. That is to say that the simulated experimental mode shapes contained 

deflection data for translation and rotation at every node of the finite element model. In 

the actual experimental mode shape data set this is not the case. It is not practical to 

measure deflection data at every point that corresponds to a node of the finite element 

model, so the experimental mode shapes will be spatially incomplete. Because of the 

difference in the amount of data between the analytical model mode shapes and the test 

data mode shapes, some method is needed to match the number degrees of freedom 
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between the two data sets. One technique is to reduce the analytical mode shapes down to 

the number of degrees of freedom of the experimental mode shapes. The other method is 

to expand the experimental mode shapes up to the number of degrees of freedom of the 

analytical mode shapes. Three different methods for either the reduction of the analytical 

mode shape data set or the expansion of the experimental mode shape data set were 

examined. 

1.        Extraction Method 

The first and simplest method of matching the mode shape degrees of freedom is 

to extract those elements of each analytical mode shape that correspond to the points 

where the experimental mode shape were measured. The points for measurement on the 

experimental model will be called the "aset" or "analysis set." The experimental data set 

will contain the relative deflection at these points. The measurement points are chosen to 

correspond to some of the nodes in the analytical model. The "oset" or "omitted set" are 

the degrees of freedom of the analytical model that are not measured in the experiment. 

The extraction method of analytical mode shape reduction is to simply extract the aset 

data points needed for comparison while ignoring the oset data points. Then the 

experimental and the analytical sets can be compared on a one to one basis. The 

following equations apply: 

take 

{<t>a} = {C} (4-2) 
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for comparison to the experimental data set. The superscript "a" refers to analytical set, 

the subscript "a" refers to the aset, and the subscript "o" refers to the oset. 

2. Transformation Matrix Reduction and Expansion 

Other methods for expanding or reducing the data sets are based on partitioning 

the mass and stiffness matrices. The subject is discussed in depth in references (12) and 

(13). The methods for partitioning the matrices are the Static Reduction Method, detailed 

in reference (12), and the Improved Reduction System (IRS) Method, which is detailed in 

reference (13). The methods use alternate means to derive a transformation matrix from 

the mass and stiffness matrices. The transformation matrix can be used to either reduce 

the analytical system or to expand the experimental system. 

The mass and stiffness matrices are initially partitioned based on the aset and oset. 

These partitioned mass and stiffness matrices are then manipulated to develop a matrix 

equation relating deflections for the oset to those of the aset as shown below: 

KHt]{xa} (4.3) 

where t can be derived by either the Static Reduction Method or the IRS method. The 

transformation matrix is then formed by combining an nxn identity matrix, where n is the 

number of degrees of freedom for the experimental system, with [t] as shown below. 

"I. 
[Tr] = 

nxn 

t 
(4.4) 

This transformation matrix is then used to form the reduced mass and stiffness matrices 

from the partitioned mass and stiffness matrices as shown in the following: 

[KR] = [Trf[Kp][Tr] (4.5) 
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[MR]=[Tr]T[Mp][Tr] (4.6) 

The reduced mass and stiffness matrices can then be solved to provide an analytical set 

with the same number of degrees of freedom as the experimental set. 

The same transformation matrix described above can also be used to expand the 

experimental mode shapes by direct matrix multiplication as shown below. 

Xa 

X„ 
= [Tr]{xa} (4.7) 

The transformation matrix is multiplied times the experimental mode shape matrix and 

the resulting partitioned matrix contains the expanded experimental mode shapes. This 

results in experimental mode shapes with the same number of degrees of freedom as the 

spatially complete analytical mode shapes. The different reduction or expansion methods 

will be applied to determine if one provides an advantage in its use during the 

optimization process. 

C.        MODEL UPDATING 

1.        Test Article Description 

The test article to verify the optimization process for model updating was an 

aluminum airplane model. The model consisted of a square beam fuselage, with a plate 

metal wing, and a plate metal tail, both attached to the fuselage with screws. Component 

dimensions and masses were measured directly. Specific airplane physical data is 

included in Appendix D. 

The dynamic response of the plane was measured using a bandwidth of 625 Hertz. 

The excitation force was applied in 42 different locations on the plane, including points 

67 



on the wing, the tail, and the fuselage. A diagram of the excitation point layout for data 

collection is included in Appendix D as Figure 1. The response of the airplane test article 

was measured in two locations. These locations were at outermost excitation points on 

the right main wing and the left horizontal stabilizer. A polyreference curve fit procedure 

in the IDEAS software was used to generate the experimental mode shapes for the test 

article. The experimental mode shapes are included in Appendix D as Figures D-2 

through D-ll. 

2.        Finite Element Model Description 

The finite element model to study the airplane was built using IDEAS simulation 

software. The measured physical dimensions and an assumed value of Young's modulus 

were the basis for representing the features of the airplane. The wings and tail were 

represented as thin shell elements while the fuselage was modeled as square section beam 

elements. The beam elements at the joints were created with the same nodes as used for 

the wing elements. The beam elements were then offset to account for the actual 

positioning of the fuselage. No other compensation to the stiffnesses was included to 

account for the joints on the wing or the tail. Specific finite element information is 

included in Appendix E, including a plot of the model elements in Figure E-l. The model 

was used to predict the first ten flexible modes of vibration. Analytical mode shape plots 

are included in Appendix E as Figures E-2 through E-l 1. The six rigid body modes were 

at frequencies, 10"6 or thereabouts, much lower than the flexible modes and were ignored. 

The analytically predicted natural frequencies and basic mode description as well as the 

corresponding experimental natural frequencies are included in Table 4-1. 
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Mode Experimental Analytical Mode Description 
Frequency Frequency 

1 103.906 135.637 Symmetric 1st Wing Bending 
2 128.125 96.751 Antisymmetric 2nd Wing Bending with 

Ampinage torsion 
3 140.625 126.072 Fuselage Horizontal 1st Bending 
4 223.047 217.966 Fuselage Vertical 1st Bending 
5 272.266 268.562 Wing Torsion 
6 335.156 293.406 Symmetric 1st Tail Bending and Wing 

Torsion/Peeling 
7 355.469 336.579 Antisymmetric 2nd Wing Bending and 

Antisymmetric 2nd Tail Bending 
8 384.984 361.009 Wing Torsion - Fuselage Vertical 1st Bending - 

Tail 1st Bending 
9 404.297 416.758 Fuselage Horizontal 2nd bending 
10 553.125 518.864 Wing Symmetric 2nd Bending 

Table 4-1 Airplane Model Dynamic Response 

Figure 4-1 is a plot of the percentage error of the analytical model versus the 

experimental data. This demonstrates the accuracy of the original finite element model in 

representing the basic dynamic responses of the airplane. The average of the absolute 

value of the percentage error is 4.87 percent. The largest error occurs for mode six and is 

over 12 percent in magnitude. The model tends to predict the system's natural frequencies 

lower than observed in the test. 

3.        Model Updating Problem 

With the data from the analytical model and experimental measurements the 

optimization problem could be constructed. The first step was to select the design 

variables to be considered for optimization. The different sections of the airplane were 
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Analytical Model Frequency Percentage Error 
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Figure 4-1 Analytical Model Frequency Percentage Error 

weighed separately, so the mass density values were reasonably accurate and as such were 

not considered as design variables. On the other hand the Young's modulus of the 

materials for the plane were assumed. Because of the lower confidence in the modulus 

values they were considered for modification as design variables. The plane was divided 

into 11 regions to be considered separately. The modulus for the elements making up 

those regions were selected as the design variables. Figure 4-2 shows how the plane was 

divided into regions for the design variables. Note that the wing and the tail regions are 

symmetric with respect to the fuselage. The division of the plane into the different regions 

provided great flexibility for the optimization process. The design variables could be 

considered individually or linked together with other design variables. For instance the 

four regions of the wing that are not on the joint could be linked to form a separate design 

variable. This allowed the investigation of more than just the case with 11 design 

variables. 
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11. Tail Joint 

Figure 4-2 Airplane Model Design Variable Regions 

The sensitivity update method was used to update the finite element model 

frequencies during the optimization iterations. The sensitivity values were computed by 

the IDEAS software. The objective function for the optimization process was of the form 

as shown in Equation (3-4), which is repeated below: 

fx -fa ^ADVt 
OF = A*£lj „/' +B*S-     'k 

i=l f," k=l DV„ 
(4.8) 

where n is the number of modes and m is the number of design variables. The objective 

function contains a frequency difference term and a change in design variables term. The 

frequency term weighting multiplier, A, was set to ten while the change in design variable 

term weighting multiplier, B, was set to zero. The constraints imposed on the solution 

were that the individual frequency error terms were to be less than 5 percent and the 

design variables were allowed to vary up to 40 percent. 
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There was another issue for the optimization process with the airplane model 

which was not present for the computer simulation. The issue was which natural 

frequencies to consider for the optimization process. The finite element model predicted 

10 vibrational modes in the bandwidth for the test. However, not all of them were out-of- 

plane modes. For example mode 9 was horizontal bending of the fuselage, with very little 

deflection in the direction that the response accelerometers where set up to measure. 

Modes 2 and 3 were also predominantly in-plane modes, but the wing and tail deflection 

was significant enough to detect experimentally. Because of the difficulties in measuring 

all of the modes, some optimization iterations were conducted with one or more of the 

modes omitted. 

4.        Optimization Process 

The optimization process was run numerous times to calculate candidate solution 

sets. The sensitivities for the 11 regions of the airplane were combined to form as few as 

five and as many as 11 design variables for an optimization run. The 2-level factorial 

algorithm was used within the optimization run to investigate the different combinations 

of the active design variables. The solution process was more volatile with multiple 

design variables. The A multiplier needed to be adjusted frequently to ensure the solution 

process would run to completion. There was a problem encountered within the 

constrained optimization routine in MATLAB. If the multiplier for the frequency term 

was not high enough, the routine would crash due to a magnitude error. While the routine 

was attempting to go to the next iteration point, a fatal error would occur because one of 
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the numbers in the process would go to zero. Changing the A multiplier changes the slope 

of the objective function preventing the deficiency in the routine from occurring. 

Following the completion of the optimization runs a value for average frequency 

error was calculated to be used as an initial evaluation method for each solution. Because 

the finite element model was computed within IDEAS, the optimization process could not 

automatically update the original finite element model. The candidate solutions were 

entered by hand into IDEAS to calculate the new analytical frequencies and mode shapes 

for comparison and final solution evaluation. The analytical mode shapes were reduced to 

the same number of degrees of freedom of the experimental model by the extraction 

method. This method was chosen because of the earlier simulations which showed no 

advantage in solution accuracy for the other more complex methods. 

5.        Optimization Solution 

The solution which was selected as optimal was computed with five design 

variables and all ten frequencies. This solution had the lowest average error for all ten 

frequencies and the highest MAC value of all of the runs. The specific frequency values 

and errors are included in Appendix E in Table E-l. The design variable regions for this 

solution and their designations in Figure 4-2 are: 

• Fuselage (1) 

• Wing - except for joint region (2,3,4, and 5) 

• Wing joint region (6,7, and 8) 

• Tail - except for joint region (9 and 10) 

• Tail joint region (11) 
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The maximum change made to the any of the design variables was for the tail, and was a 

31 percent increase from the original value. All of the design variable values were 

increased with the exception of the fuselage. Figure 4-3 shows the effects of the updating 

process on the frequency errors for the finite element model. The original model errors 

are plotted with the updated model errors. The finite element model average frequency 

error was reduced from 4.87 percent to 1.92 percent. 
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Figure 4-3 Frequency Error Comparison, Original and Updated Models 

6.        Solution Interpretation 

The optimization process provided a solution set to update and improve the 

performance of the finite element model. But what do the changes to the design variables 

signify? The process indicates that the modulus in the wing, tail, and both joints should 

be increased. The plate material and the joint characteristics are suffer than assumed for 

the original model. This gives an indication why most of the natural frequencies were 
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originally predicted low by the model. These stiffness increases resulted in most of the 

natural frequencies increasing in value. The wing and wing joint stiffness was increased 

which raised the predicted frequencies for the wing modes; 1,5,7, and 10. The increases 

in stiffness improved the accuracy for modes 1, 7 and 10 but overcompensated for mode 

5 and actually increased the error magnitude. This demonstrates that it is difficult to 

isolate particular modes with fairly large design variable regions. Smaller design variable 

regions may have more success in correcting that model deficiency. The tail stiffness was 

increased dramatically. This was to compensate for mode 6, which is tail bending, being 

predicted rather low. The model prediction for this mode was probably quite low because 

the mass density had been increased to compensate for a weld bead on the tail. The body 

modulus was reduced to lower the frequencies that were fuselage dominated because 

mode 9 was predicted high. In retrospect, the recommended changes to the material 

properties tend to show where the mistakes were made in the construction of the finite 

element model. This goes to demonstrate how hard some properties are to represent 

accurately in the model. It also highlights the assumptions that were made for property 

values or dimensions that incorrectly represented the true values. 

D.       COMPOSITE BEAM DAMAGE LOCALIZATION 

1.        Test Article and Finite Element Model Description 

The experimental verification of the damage localization process was conducted 

with two composite beams. One of the beams was undamaged while the other had a 

known delamination 2.25 inches in length at its center. The beams were measured to 

determine physical dimensions. These articles were the basis for the composite beam 
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models and the properties used in the Chapter HI computer simulations. The assumed 

value for Young's modulus of the beam is the value identified in Reference (14). Specific 

beam data is included in Appendix B. 

Beam dynamic response was measured experimentally with a frequency 

bandwidth of 1200 Hertz. The response of the each beam was measured at a single point, 

which was located at the left end of the beam. The excitation force was applied in 25 

different locations along the length of the beams. A diagram of the excitation point layout 

for data collection is included in Appendix F as Figure F-l. A polynomial curve fit 

procedure was used to generate the experimental mode shapes for the test pieces. The 

experimental mode shapes for the damaged beam are included in Appendix F as Figures 

F-2 through F-10. 

2.        Finite Element Model Update 

The experimental data from the undamaged beam was used to update a finite 

element model to develop the baseline model for the beam. The updated model could 

then be used to detect and localize damage in a similar beam. The design variable for the 

model updating procedure was Young's modulus of the composite beam. The first five 

natural frequencies were utilized in the update procedure. The optimization process 

increased the value of the modulus to match the experimental frequencies of the 

undamaged beam. The results of the optimization process are included in Table 4-2. 
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Mode Experimenta Initial Percentage Updated Percentage 
1 Analytical Error Analytical Error 

Frequency Frequency Frequency 
1 29.06 27.95 -3.82 29.04 -0.07 
2 79.69 77.06 -2.62 80.05 -0.45 
3 156.56 151.05 -3.51 156.93 -0.23 
4 259.38 249.66 -3.80 259.36 0.01 
5 386.25 372.83 -3.47 387.32 -0.04 

Table 4-2 Composite Beam Update Data 

3.        Damage Localization 

The damage localization problem with experimental data was set up identical to 

the problem set up using the simulated experimental data as discussed in Chapter HI. The 

objective function was weighted to emphasize the frequency difference term, and the 

design variable under consideration was the modulus for the sectors of the beam. The 

only difference was in the use of the experimental frequencies and mode shapes and the 

use of spatially incomplete data. The experimental data included translation at 25 points 

while the finite element model contained translation and rotation information for 49 

nodes. All three of the data reduction or expansion methods were used to equalize the 

number of degrees of freedom for the analytical and experimental mode shapes. The 

summed MAC rating for all of the modes was used to evaluate the solutions. The 

optimization routine was run with the first nine natural frequencies. The 2.25 inch crack 

is located at the center of the beam and overlaps the four center elements of the beam. 

Elements 24 and 25 contain most of the known damage but elements 23 and 26 could 

also display decreased stiffness. 
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4.        Localization Results 

The first trial investigated the localization process with spatially incomplete data. 

The method used for mode shape equalization was analytical mode shape reduction using 

the extraction method. The aset data from the analytical model mode shapes was 

extracted and compared to the experimental mode shapes to compute the MAC. The 

results of the search procedure are included in Table 4-3. The MAC values themselves are 

not included in the table but the region with the highest rating is highlighted to indicate 

the search results. Extraction provided the correct identification of the damage in the 

center elements. 

Damage in Elements 24-25 

1st Iteration 1-16                  17-32                  33-48 1-48 
Sectors 

2nd Iteration 17-21                 22-27                  28-32 17-32 
Sectors 

3rd Iteration 22-23                 24-25                  26-27 22-27 
Sectors 

Table 4-3 Composite Beam Damage Search Results, Extraction Method 

The next trial investigated the localization process with the reduction of the 

analytical mode shapes using the Static Reduction transformation matrix. Results are 

contained in Table 4-4. 
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Damage in Elements 24-25 

1st Iteration 1-16 17-32 33-48 1-48 
Sectors 

2nd Iteration 17-21 22-27 28-32 17-32 
Sectors 

3rd Iteration 22-23 24-25 26-27 22-27 
Sectors 

Table 4-4 Composite Beam Damage Search Results, Static Reduction 

The next trial investigated the localization process  with expansion of the 

experimental mode shapes using the Static Reduction transformation matrix. Results are 

contained in Table 4-5. 

Damage in Elements 24-25 

1st Iteration 1-16                  17-32                 33-48 1-48 
Sectors 

2nd Iteration 17-21                 22-27                 28-32 17-32 
Sectors 

3rd Iteration 22-23                 24-25                 26-27 22-27 
Sectors 

Table 4-5 Composite Beam Damage Search Results, Static Expansion 

The next trial investigated the localization process with the reduction of the 

analytical mode shapes using the Improved Reduction System (IRS) transformation 

matrix. Results are contained in Table 4-6. 
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Damage in Elements 24-25 

1st Iteration 1-16 17-32 33-48 1-48 
Sectors 

2nd Iteration 17-21 22-27 28-32 17-32 
Sectors 

3rd Iteration 22-23 24-25 26-27 22-27 
Sectors 

Table 4-6 Composite Beam Damage Search Results, IRS Reduction 

The next trial investigated the localization process with expansion of the 

experimental data using the Improved Reduction System (IRS) transformation matrix. 

Results are contained in Table 4-7. 

Damage in Elements 24-25 

1st Iteration 1-16                  17-32 33-48 1-48 
Sectors 

2nd Iteration 17-21                 22-27 28-32 17-32 
Sectors 

3rd Iteration 22-23                 24-25 26-27 22-27 
Sectors 

Table 4-7 Composite Beam Damage Search Results, IRS Expansion 

5.        Solution Interpretation 

All five of the solutions from the damage localization routines converge to the 

two center elements as the most probable location of damage, which is the location of the 

known damage. This successful demonstration of the localization process shows that the 

sector search logic combined with the optimization routine can locate damage in a simple 
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test structure using spatially incomplete data. As far as the methods of compensating for 

spatially incomplete data all of the techniques investigated were successful. Without a 

performance advantage for any of the methods the one that requires the least 

computational time should be used. The extraction method requires no computations 

other than identifying and extracting the aset data points so that method should be 

employed. 

Four other composite beams with known damages were also tested to determine if 

the damage could be localized. The experimental frequency data for the beams was not 

consistent enough to allow the process to succeed. That is, the frequency shifts induced 

by the reduction of stiffness in the beam did not provide a consistent downward trend for 

all natural frequencies as compared to the undamaged beam. Without consistent 

frequency shifts the optimization and damage localization process will not be successful. 

Therefore the extent of the damage will remain unknown. 

E.        STEEL BEAM DAMAGE LOCALIZATION 

1. Test Article and Finite Element Model Description 

The experimental verification of the damage localization process was also 

investigated with a steel beam test piece. The beam was tested in the undamaged state to 

update the finite element model and then notched to simulate stiffness reduction. The 

beam was measured directly to determine physical dimensions. The assumed value for 

Young's modulus of the beam was the standard value used for steel. Specific beam data is 

included in Appendix G. 
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Beam dynamic response was measured experimentally with a frequency 

bandwidth of 2500 Hertz. The response of the beam was measured at a single point, 

which was located at the left end of the beam. The excitation force was applied in 25 

different locations along the length of the beam. A diagram of the excitation point layout 

for data collection is included in Appendix G as Figure G-2. A polynomial curve fit 

procedure was used to generate the experimental mode shapes for the test pieces. The 

experimental mode shapes for the damaged beam are included in Appendix G as Figures 

G-3 through G-12. 

2.        Finite Element Model Update 

The experimental data from the beam in the undamaged condition was used to 

update a finite element model to develop the baseline model for the beam. The updated 

model could then be used to detect and localize damage in the test piece. The design 

variable fro the model updating procedure was Young's modulus of the beam. The first 

five natural frequencies were utilized in the update procedure. The optimization process 

decreased the value of the modulus to match the experimental frequencies of the 

undamaged beam. A MAC calculation was done to determine how well the analytical 

mode shapes matched the experimental mode shapes. All five of the mode shapes had 

MAC values greater than 0.99 indicating very good correlation of the analytical results to 

the experimental mode shapes. The results of the optimization process are included in 

Table 4-8. 

82 



Mode Experimenta Initial Percentage Updated Percentage 
1 Analytical Error Analytical Error 

Frequency Frequency Frequency 
1 56.25 57.54 2.29 56.186 -0.11 
2 155.00 158.62 2.33 154.89 -0.01 
3 303.75 310.97 2.37 303.66 -0.01 
4 501.25 514.08 2.56 502.0 0.01 
5 746.875 768.00 2.83 749.96 0.01 

Table 4-8 Steel Beam Update Data 

3.        Damage Localization 

The damage localization problem for the steel beam was set up identical to the 

problems explored for simulated tests in Chapter HI and for the experimental composite 

beam test. The objective function was weighted to emphasize the frequency difference 

term, and the design variable under consideration was the modulus for the sectors of the 

search. The experimental data included relative translation at 25 points while the finite 

element model contained translation and rotation information for 49 nodes. All three of 

the data reduction or expansion methods were used equalize the number of degrees of 

freedom for the analytical and experimental mode shapes. The summed MAC rating for 

all of the modes was used to evaluate the solutions. The optimization routine was run 

with the first nine natural frequencies. The damage condition was induced by notching the 

beam. The reduction in cross sectional area was made in element 25 and resulted in a 

decrease of 9.22 percent to the moment of inertia in that element, effectively reducing the 

stiffness of the beam. 
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4. Solution Method 

The initial trials for the steel beam optimization routine did not provide a solution 

for the change to the design variable needed to update the model. The solution process 

continually returned the initial value of the design variable as the optimal solution. This 

was due to the errors in the analytical frequencies versus the experimental frequencies. 

The analytical model predicted the low frequencies high and the high frequencies low. 

The relative error was about equal so the routine determined that the system was at the 

optimal solution. To compensate for the inability of the optimization process to solve for 

the change to the design variable another method was used. This method is similar to the 

direct solve method discussed in Chapter in and is called the pseudo-inverse method. 

This method uses an overdetermined matrix equation to solve for the change to a single 

design variable. The sensitivity matrix, [T], is reduced to a 9 x 1 vector. The vector is 

transposed and the individual terms are inverted. This procedure is called the pseudo- 

inverse of a non-square matrix. The solution for the single design variable change can 

then be computed as follows: 

ADV= [pinv(T)]{A f} (4.9) 

where pinv indicates the pseudo-inverse procedure. This procedure does provide a 

solution for the reduction in the design variable that is used for the sector search. 

5. Localization Results 

The use of the pseudo-inverse solution method did allow the routine to compute a 

value for the change to the modulus within a region. The search procedure was not 
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successful though. The process tended to select the overall regions instead of one of the 

three sectors for the search. The results for this damage case are shown in Table 4-9. 

Damage in Element 25 

1st Iteration 1-16 17-32 33-48 1-48 
Sectors 

2nd Iteration 17-21 22-27 28-32 17-32 
Sectors 

Table 4-9 Steel Beam Damage Search Results, Extraction Reduction 

The process indicates the overall region for the second iteration. In fact the next 

highest MAC value was for the right sector, elements 28 to 32, so even if the overall 

region selection was ignored the known solution would not be selected. None of the 

methods of compensating for the spatially incomplete data made the results improve in 

accuracy. 

6.        Simulated Experimental Damage 

To investigate why the process did not work for this test piece, the experimental 

damage condition was simulated by making adjustments to the baseline finite element 

model. The simulated experimental data set was then compared to the experimental data. 

The comparison data is contained in Table 4.10. The simulated experimental data was 

reduced to be spatially incomplete by the extraction method, that is the aset points were 

extracted from the simulated modal data. 
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Mode Experimental Simulated Percentage MAC 
Frequency Frequency Error 

1 56.25 56.02 -0.41 0.9987 
2 154.688 154.89 0.13 0.9974 
3 303.125 302.99 -0.04 0.9972 
4 501.562 501.97 0.09 0.9973 
5 746.88 748.33 0.19 0.9924 
6 1042.19 1047.37 0.50 0.9921 
7 1381.25 1391.88 0.77 0.9823 
8 1768.75 1791.16 1.27 0.9907 
9 2201.56 2233.85 1.47 0.9917 

Table 4-10 Simulated Experimental Data Comparison 

The major differences are observed in the simulated frequencies as compared to 

the experimental frequencies. The MAC values rate how well the individual simulated 

modes correlate to the experimental modes. Ratings in excess of 0.99 indicate very good 

correlation. The solution process was then run with the simulated experimental data. The 

simulated experimental mode shapes were spatially complete. The aset data was extracted 

to generate spatially incomplete experimental mode shapes. The results for that case are 

included in Table 4-11. 

Damage in Element 25 

1st Iteration 1-16 17-32 33-48 1-48 
Sectors 

2nd Iteration 17-21 22-27 28-32 17-32 
Sectors 

3rd Iteration 22-23 24-25 26-27 22-27 
Sectors 

4th Iteration 23 24 25 23-25 
Sectors 

Table 4-11 Steel Beam Damage Search Results, Simulated Experimental Data 
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The process successfully identified the damage for the simulated experimental 

case. At this point the natural frequencies and mode shapes of the actual experimental 

data set were substituted for the simulated experimental data to determine which factors 

caused the actual experiment to fail in damage localization. Table 4-12 summarizes the 

results of inserting the experimental data into the simulated experimental data set. 

Modes Frequency Shapes Both 
1 25 25 25 
2 25 25 25 
3 25 25 25 
4 25 17-32/24-25 17-32/24-25 
5 25 31 31 
6 25 30 30 
7 17-32/24-25 30 17-32/24-25 
8 17-32/24-25 22-27 17-32/24-25 
9 17-32/26-27 25 17-32/22-27 

1-3 25 25 25 
4-6 25 30 30 
7-9 17-32/22-27 30 17-32/22-27 
1-9 17-32/22-27 30 17-32/28-32 

Table 4-12 Experimental Data Substitution Results 

a.        Frequency Substitution 

The experimental frequencies were substituted into the simulated 

experimental data set both one at a time and in groups. Changing the frequencies for the 

first six modes of the simulated data set individually, had no effect on the solution. The 

process converged to element 25 as had been previously observed for the simulated data. 

When the frequencies for mode seven or mode eight were substituted into the data set, the 

process selected elements 17 to 32 instead of the center sector. This result was ignored to 

determine if the problem existed in the rating of the overall region. Selecting the highest 
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sector, which was the center, iterations were continued to see if a single element could be 

identified. The next iteration selected elements 24 and 25 but a final iteration did not 

select element 25. 

The natural frequencies were then substituted in groups. The first group 

consisted of the frequencies for first three modes. This did not change the results. 

Substituting the frequencies for modes 4 to 6 did not change the results either. 

Substituting the frequencies for modes 7 to 9 again caused the process to select elements 

17 to 32. This response was ignored and another iteration was run which selected sector 

22 to 27. Substituting the frequencies for all nine modes had the same effect as 

substituting the frequencies for modes 7 to 9. 

This substitution process indicates that the frequencies for the high modes 

contaminate the solution process in some fashion to create error. The probable problem is 

that the large frequency difference between the analytical and experimental results force 

the pseudo-inverse solution to be too large. This creates error when the updated mode 

shapes are calculated and results in the MAC selecting the larger region. 

b.        Mode Shape Substitution 

The experimental mode shapes were then substituted into the simulated 

experimental data set one at a time and in groups. Substituting the first three mode shapes 

individually had no effect. Substituting the fourth mode shape caused the process to select 

elements 17 to 32. If that selection was ignored the next iteration selected elements 24 

and 25. Substituting the fifth mode shape resulted in the selection of element 31 as the 

damage location. Substituting both the sixth and seventh mode shapes resulted in the 



selection of element 30 as the damage location. The eight mode shape resulted in the 

selection of elements 22 to 27 and the ninth mode shape had no effect. 

The mode shapes were then substituted in groups. Mode shapes 1 to 3 had 

no effect on the solution. Substituting mode shapes 4 to 6 caused the process to select 

element 30. Substituting mode shapes 7 to 9 and 1 to 9 both lead to the process selecting 

element 30. 

The substitution of the mode shapes indicates that the mode shapes are not 

the same as those predicted by the simulated damage finite element model. Even though 

the MAC between the simulated damage mode shapes and experimental modes shapes 

indicates a good match it is not good enough. Also the higher modes are less similar to 

the experimental data. The higher mode shapes contaminate the solution so the process 

selects the wrong elements. This could be caused by noise, faulty data taking, or an error 

in the process used to calculate the mode shapes. 

c. Frequency and Mode Shape Substitution 

The experimental frequencies and mode shapes were then substituted into 

the simulated experimental data set one mode at a time and in groups. Substituting the 

first three modes individually had no effect. Substituting the fourth mode caused the 

process to select elements 17 to 32. If that selection was ignored the next iteration 

selected elements 24 and 25. Substituting the fifth mode resulted in the selection of 

element 31 as the damage location. Substituting the sixth mode resulted in the selection 

of element 30 as the damage location. Substituting the seventh mode or the eight mode 

resulted in the selection of elements 17 to 32. This was ignored and another iteration 
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selected elements 24 and 25. Substituting the ninth mode resulted in selecting elements 

22-27. 

The modes were then substituted in groups. Modes 1 to 3 had no effect on 

the solution. Substituting modes 4 to 6 caused the process to select element 30. 

Substituting mode shapes 7 to 9 caused the process to select elements 17 to 32. Another 

iteration selected elements 22 to 27. Substituting modes 1 through 9 lead to the process 

selecting elements 28 to 32. 

The substitution of both the frequencies and the mode shapes indicates that 

the data from the experimental data set is not "clean" enough to select the known damage 

location. The problem with the data could be any one of the items cited for the mode 

shape problems. The results for the lower modes would seem to indicate that if a solution 

was run just considering the lower modes that the correct damage location would be 

identified, but that was not the case. 

7. Solution Interpretation 

The unsuccessful trials for the steel beam indicate that the sector search method 

does have some limitations. The experimental data set needs to be extremely clean or the 

search process will be ineffective. Even the smallest noise or other contamination will 

cause errors in the process. Another problem is the inability of the optimization routine to 

run for the steel beam. The frequency differences should cause the routine to search for an 

optimum value but it does not. This may be due to a problem in the sensitivity matrix, but 

that does not account for the process working for beam optimization or the pseudo- 
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inverse solve procedure. This test case does indicate that further study in necessary on the 

sector search form damage localization. 
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V. CONCLUSIONS / RECOMMENDATIONS 

A.       SUMMARY 

Sensitivity-based finite element model updating and numerical optimization 

procedures were developed to improve finite element model performance and to detect 

structural damage. Experimentally measured dynamic responses were compared to 

analytically predicted dynamic responses to provide a basis to make corrections to design 

parameters of the finite element model. The investigation of updating procedures and 

applications have shown the following: 

• The updating and optimization procedures provide a means to modify finite 

element models to improve their accuracy, or to determine structural damage 

by a comparison of experimentally measured dynamic responses to those 

predicted by the finite element model. 

• Sensitivity based updating of analytical natural frequencies for small changes 

to design parameters is a valid method of approximation that reduces 

computational requirements during the optimization process. 

• Numerical optimization methods provide a logical search procedure and 

enhance computational efficiency in the determination of the corrections that 

need to be made in order to update finite element models. 

• The 2-level factorial search algorithm provides a thorough means to test 

different combinations of design variables to ensure the best solution is 

attained.  However,  the  number of iterations  for this  method increases 
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exponentially with the number of design variables, precluding its use for 

problems with large numbers of design variables. 

• The sector search methodology provides a logical search procedure to isolate 

damage to a specific region of structure. 

• The Modal Assurance Criterion provides a means to select the optimal 

solution during the optimization process by evaluating which candidate 

solution mode shapes most closely match the experimental data. 

• The effectiveness of these procedures is directly dependent on the quality of 

the experimental measurements. 

B.       CONCLUSIONS 

The processes investigated for model updating were effective in determining 

changes to be made to a finite element model to more closely resemble the response of 

the structure being modeled. These processes not only improve the performance of the 

finite element model but enhance the analyst's understanding of the finite element model 

and the structure itself. The process of identifying the design parameters and examining 

the specifics of the system dynamic responses, increases the level of understanding of 

how individual sections and their physical properties affect the overall characteristics of 

the system. The two applications highlight different points about the process. 

The model update problem is dependent on the number and type of design 

parameters chosen for evaluation. The parameters should be chosen with care to ensure 

that they allow the isolation of specific mode shapes and frequencies while at the same 

time not overloading the computational capabilities in the process. The modifications to 
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model parameters determined by the process tended to highlight faulty assumptions or 

property values which could not be represented with high confidence. The solutions are 

also dependent on the bandwidth of experimental data available for comparison. 

The composite beam damage localization process demonstrated that the sector 

search logic and model updating could be used to locate damage. This process is highly 

dependent on the structure having a previously validated finite element model to provide 

baseline response data. This process is also dependent on the damage condition inducing 

a consistent pattern of frequency errors from the baseline model. 

The damage localization problem with the steel beam highlights some of the 

problems in comparing the analytical responses to the experimental response. The 

frequencies predicted by the finite element model for the undamaged beam diverged from 

the actual results. The higher system frequencies of the baseline model had relatively high 

error levels and contaminated the solution process preventing damage localization. The 

accuracy of the mode shape measurements also played a role in this test not being 

successful. Without highly accurate experimental mode shapes the process will identify 

the wrong location for damage. 

C.       RECOMMENDATIONS 

The model updating procedures and routines developed showed positive results 

both for simulated and actual experimental data. However, there were limitations in the 

ability to pass data from one software type to another for the model update procedure, and 

the damage localization procedure did not work on both test pieces. Recommendations to 

address these and other shortcomings of these processes include: 
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• Continue to develop routines to pass data directly between the software used 

for optimization, MATLAB, and the software used for finite element model 

simulation, such as IDEAS. 

• Modify the optimization processes to utilize mode shape sensitivities for use 

with MAC solution evaluation vice re-solving the eigenproblem. 

• Modify the optimization routine to allow more flexibility in its application, by 

allowing for direct user interface with the use of pull down menus or prompts 

removing the need to hardcode for a given model type. 

• Continue to investigate the process of model updating by applying the baseline 

software to more complex structures. 

• Develop more efficient methods of combining design variables to allow 

isolation of all modeling errors while not requiring excessive iterations. 

• Continue to research the sector search method of damage localization to both 

isolate why the method failed for the steel beam, and to apply the logic to 

larger and more complex structures. 

• Employ aset and oset information to effectively increase the bandwidth of 

experimental testing. 

• Employ more advanced means of measurement to remove possible errors due 

to noise or other signal contamination. 

The ability to pass mode shape or design variable data directly from IDEAS to 

MATLAB or vice versa would greatly enhance the efficiency of the updating process. 

The time required to format data to put into MATLAB or to feedback design variable 
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modifications into simulation software greatly limits the size and number of solutions that 

can be investigated during optimization. Direct conversion will be required for larger 

models. 

Mode shape sensitivities can be used to approximate the change to the mode 

shapes of a system based on the change to design parameters. By using this 

approximation the need to re-solve the eigenproblem to evaluate every candidate solution 

is removed and would greatly increase computational efficiency. 

The computer codes used in this thesis were hardcoded to the specific situation. 

Although all of the processes would be similar, the ability to apply this method to other 

situations requires user modification of the code. Methods to improve user interface 

should be developed. 

The processes developed could be expanded to handle larger and more complex 

systems. The updating logic could be applied to finite element models generated by other 

students for specific pieces of equipment. This would improve both the models being 

analyzed and the optimization code. The sector search logic could be expanded to include 

a way to deal with shell elements or for complex geometry than the beam elements tested. 

The 2-level factorial algorithm employs large numbers of iterations to investigate 

all possible design variable combinations. Other methods of examining design variable 

combinations that allow isolation of errors while not requiring excessive computer time 

should be developed. This would greatly improve the computational efficiency of the 

optimization process. 
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The ability to extract more data from a test bandwidth could be explored through 

the use of aset and oset system frequencies. Basically the methods allow the analyst to 

process test data as if measurement points were fixed, effectively introducing a new set of 

boundary conditions. This would increase the number of system frequencies that could be 

used in the sensitivity equations. 

The ability of a process to accurately update a model or to localize damage are 

dependent on the quality of the measured test data. Without accurate natural frequencies 

and mode shapes the process can not be expected to succeed for either application. 
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APPENDIX A. ALUMINUM BEAM SPECIFICATIONS 

A.       PHYSICAL DIMENSIONS AND PROPERTIES 

The aluminum beam used for the Chapter in computer simulations was not 

patterned after a actual test piece. The dimensions of the beam were chosen at random 

and the physical properties were chosen from standard material data for aluminum. The 

beam orientation for the simulations was as depicted in Figure A-l. The degrees of 

freedom were the vertical translation, upward in the figure, and rotation around a vector 

out of the plane of the page. 

D 

W 

L = 10 feet D = 10 inches W = 3 inches 

Figure A-l Aluminum Beam 

The physical properties chosen for the beam were: 

Young's modulus       E = 10 e 6       PSI 
mass density p = 0.000254 lbf-sec2/in4 

B.       DYNAMIC RESPONSE 

The system natural frequencies predicted by the finite element model are: 

Mode 1 22.26 Hz 
Mode 2 139.50 Hz 
Mode 3 390.82 Hz 
Mode 4 767.11 Hz 

The mode shapes predicted by the finite element are included in Figures A-2 through A-5. 
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Figure A-2 Aluminum Beam, 1st Mode Shape 
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Figure A-3 Aluminum Beam, 2nd Mode Shape 
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Mode Shape 3 

Figure A-4 Aluminum Beam, 3rd Mode Shape 

Mode Shape 4 
0.6 

Figure A-5 Aluminum Beam, 4th Mode Shape 
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OPTIMIZATION RESULTS 

Numerical results for Test Cases 1 to 8 in Chapter III are included in the following 

tables. 

Prescribed Percentage Difference 
Mass            1 Modulus Mass            Modulus 

Mass Down 0.000234 1.00E+07 -7.8740157 0 
Mass Down, Mod Down 0.000234 9.50E+06 -7.8740157 -5 
Mass Down, Mod Up 0.000234 1.05E+07 -7.8740157 5 
Mod Down 0.000254 9.50E+06 0 -5 
Mod Up 0.000254 1.05E+07 0 5 
Mass Up 0.000274 1.00E+07 7.8740157 0 
Mass Up, Mod Down 0.000274 9.50E+06 7.8740157 -5 
Mass Up, Mod Up 0.000274 

Solution 

1.05E+07 7.8740157 

Percentage Difference 

5 

Mass            1 Modulus Mass             Modulus 
Mass Down 0.000233 1.00E+07 -8.2677165 0 
Mass Down, Mod Down 0.000246 1.00E+07 -3.1496063 0 
Mass Down, Mod Up 0.000229 1 .OOE+07 -9.8425197 0 
Mod Down 0.000267 9.99E+06 5.1181102 ■0.1 
Mod Up 0.000241 1 .OOE+07 -5.1181102 0 
Mass Up 0.000273 9.99E+06 7.480315 ■0.1 
Mass Up, Mod Down 0.000279 9.99E+06 9.8425197 ■0.1 
Mass Up, Mod Up 0.000261 9.99E+06 2.7559055 -0.1 

Table A-l Test Case 1 Numerical Results 
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Prescribed Percentage Difference 
Mass             Modulus Mass            Modulus 

Mass Down 0.000234 1 .OOE+07 -7.8740157 0 
Mass Down, Mod Down 0.000234 9.50E+06 -7.8740157 -5 
Mass Down, Mod Up 0.000234 1.05E+07 -7.8740157 5 
Mod Down 0.000254 9.50E+06 0 -5 
Mod Up 0.000254 1.05E+07 0 5 
Mass Up 0.000274 1 .OOE+07 7.8740157 0 
Mass Up, Mod Down 0.000274 9.50E+06 7.8740157 -5 
Mass Up, Mod Up 0.000274 

Solution 

1.05E+07 7.8740157 

Percentage Difference 

5 

Mass             I y/lodulus \/lass            Modulus 
Mass Down 0.000237 1.02E+07 -6.6929134 1.9 
Mass Down, Mod Down 0.000252 1.02E+07 -0.7874016 2.4 
Mass Down, Mod Up 0.000229 1.04E+07 -9.8425197               3.97 
Mod Down 0.000267 9.99E+06 5.1181102 -0.1 
Mod Up 0.0002413 9.99E+06 -5 -0.1 
Mass Up 0.0002725 9.99E+06 7.2834646 -0.1 
Mass Up, Mod Down 0.000273 9.54E+06 7.480315 -4.6 
Mass Up, Mod Up 0.000261 9.99E+06 2.7559055 -0.1 

Table A-2 Test Case 2 Numerical Results 
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Prescribed Percentage Difference 
Mass           f Modulus Mass              Modulus 

Mass Down 0.000234 1.00E+07 -7.8740157 0 
Mass Down, Mod Down 0.000234 9.50E+06 -7.8740157 -5 
Mass Down, Mod Up 0.000234 1.05E+07 -7.8740157 5 
Mod Down 0.000254 9.50E+06 0 -5 

Mod Up 0.000254 1.05E+07 0 5 

Mass Up 0.000274 1.00E+07 7.87401575 0 
Mass Up, Mod Down 0.000274 9.50E+06 7.87401575 -5 
Mass Up, Mod Up 0.000274 

Solution 

1.05E+07 7.87401575 

Percentage Difference 

5 

Mass           1 Modulus Mass              Modulus 
Mass Down 0.00025 1.07E+07 -1.5748031 7 
Mass Down, Mod Down 0.000252 1.02E+07 -0.7874016 2.4 
Mass Down, Mod Up 0.000241 1.09E+07 -5.1181102 8.7 
Mod Down 0.000255 9.52E+06 0.19685039 -4.8 
Mod Up 0.000248 1.02E+07 -2.519685 2.49 
Mass Up 0.000271 9.92E+06 6.53543307 -0.8 
Mass Up, Mod Down 0.000263 9.15E+06 3.38582677 -8.55 
Mass Up, Mod Up 0.000254 9.73E+06 0 -2.7 

Table A-3 Test Case 3 Numerical Results 
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Prescribed 3ercentage Difference 
Mass             f Modulus Mass           Modulus 

Mass Down 0.000234 1.00E+07 -7.874016 0 
Mass Down, Mod Down 0.000234 9.50E+06 -7.874016 -5 
Mass Down, Mod Up 0.000234 1.05E+07 -7.874016 5 
Mod Down 0.000254 9.50E+06 0 -5 
Mod Up 0.000254 1.05E+07 0 5 
Mass Up 0.000274 1.00E+07 7.8740157 0 
Mass Up, Mod Down 0.000274 9.50E+06 7.8740157 -5 
Mass Up, Mod Up 0.000274 

Solution 

1.05E+07 7.8740157 

Percentage Difference 

5 

Mass            I Modulus Mass            Modulus 
Mass Down 0.000255 1.09E+07 0.3937008 9.3 
Mass Down, Mod Down 0.0002369 9.64E+06 -6.732283 -3.6 
Mass Down, Mod Up 0.0002439 1.10E+07 -3.976378 10 
Mod Down 0.000247 9.24E+06 -2.755906 -7.6 
Mod Up 0.00026 1.08E+07 2.3622047 7.5 
Mass Up 0.000261 9.56E+06 2.7559055 -4.4 
Mass Up, Mod Down 0.0002715 9.50E+06 6.8897638 -5.02 
Mass Up, Mod Up 0.000279 1.07E+07 9.8425197 7.3 

Table A-4 Test Case 4 Numerical Results 
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Prescribed Value Percentage Difference 
Mass Modulus Mass Modulus 

Mass Down 0.000234 1.00E+07 -7.874 0 
Mass Down, Mod 0.000234 9.50E+06 -7.874 -5 

Down 
Mass Down, Mod Up 0.000234 1.05E+07 -7.874 5 

Mod Down 0.000254 9.50E+06 0 -5 
Mod Up 0.000254 1.05E+07 0 5 
Mass Up 0.000274 1.00E+07 7.874 0 

Mass Up, Mod Down 0.000274 9.50E+06 7.874 -5 
Mass Up, Mod Up 0.000274 1.05E+07 7.874 5 

Solution Value Percentage Difference 
Mass Modulus Mass  Modulu DV Combo Single 

Mass Down 0.000233 1.00E+07 -8.307 0 M only 0.814 
Mass Down, Mod 0.000246 1.00E+07 -3.15 0 Konly 0.837 

Down 
Mass Down, Mod Up 0.000244 1.10E+07 -4.094 9.9 Both 0.833 

Mod Down 0.000259 9.70E+06 1.969 -3.02 Both 0.824 
Mod Up 0.000254 1.05E+07 0 5 Konly 0.8165 
Mass Up 0.000273 1 .OOE+07 7.323 0 M only 0.814 

Mass Up, Mod Down 0.000271 9.49E+06 6.693 -5.13 Both 0.812 
Mass Up, Mod Up 0.000261 9.99E+06 2.559 -0.1 Both 0.796 

Table A-5 Test Case 5 Numerical Results 
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Prescribed f Dercentage Difference 
Mass Modulus Mass    Modulus 

Mass Down 0.00024 1.00E+07 -5.5118 0 
Mass Down, Mod 0.00024 9.20E+06 -5.5118 -8 
Down 
Mass Down, Mod 0.00024 1.08E+07 -5.5118 8 
Up 
Mod Down 0.000254 9.20E+06 0 -8 
Mod Up 0.000254 1.08E+07 0 8 
Mass Up 0.000268 1.00E+07 5.5118 0 
Mass Up, Mod 0.000268 9.20E+06 5.5118 -8 
Down 
Mass Up, Mod Up 0.000268 1.08E+07 5.5118 8 

Solution Percentage Difference 
Mass Modulus Mass    Modulus 3V Combo Single 

Mass Down 0.000239 1.00E+07 -5.9055 0 M only 0.8151 
Mass Down, Mod 0.000261 9.99E+06 2.7559 -0.1 Both 0.8509 
Down 
Mass Down, Mod 0.000243 1.10E+07 -4.3701 9.9 Both 0.8215 
Up 
Mod Down 0.000254 9.20E+06 0 -8 Konly 0.8156 
Mod Up 0.000254 1.08E+07 0 8 Konly 0.8165 
Mass Up 0.000267 1.00E+07 5.1181 0 M only 0.8153 
Mass Up, Mod 0.000261 9.00E+06 2.7559 -10 Both 0.8059 
Down 
Mass Up, Mod Up 0.000252 1.02E+07 -0.7087 1.67 Both 0.7921 

Table A-6 Test Case 6 Numerical Results 
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Prescribed Value Percentage Difference 
Mass Modulus Mass    Modulus 

Mass Down 0.00024 1.00E+07 -5.5118 0 
Mass Down, Mod 0.00024 9.20E+06 -5.5118 -8 

Down 
Mass Down, Mod 0.00024 1.08E+07 -5.5118 8 

Up 
Mod Down 0.00025 9.20E+06 0 -8 

Mod Up 0.00025 1.08E+07 0 8 
Mass Up 0.00027 1.00E+07 5.5118 0 

Mass Up, Mod 0.00027 9.20E+06 5.5118 -8 
Down 

Mass Up, Mod Up 0.00027 1.08E+07 5.5118 8 

Solution Value Percentage Difference 
Mass Modulus Mass    Modulus DV Single 

Combo 
Mass Down 0.00024 1.00E+07 -5.9055 0 M only 0.815 

Mass Down, Mod 0.00025 9.62E+06 -1.2205 -3.82 Both 0.835 
Down 

Mass Down, Mod 0.00024 1.10E+07 -4.3307 9.9 Both 0.821 
Up 

Mod Down 0.00025 9.20E+06 0 -8 Konly 0.816 
Mod Up 0.00025 1.08E+07 0 8 Konly 0.816 
Mass Up 0.00027 1.00E+07 5.1181 0 M only 0.815 

Mass Up, Mod 0.00028 9.72E+06 10 -2.81 Both 0.833 
Down 

Mass Up, Mod Up 0.00025 1.01E+07 -1.5748 0.9 Both 0.789 

Table A-7 Test Case 7 Numerical Results 
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Prescribed Value         Percentage Difference 
Mass       Modulus   Mass          Modulus 

Mass Down 0.00024 1.00E+07    -5.51              0 
Mass Down, Mod 0.00024 9.20E+06    -5.51              -8 

Down 
Mass Down, Mod 0.00024 1.08E+07    -5.51              8 

Up 
Mod Down 0.000254 9.20E+06          0             -8 

Mod Up 0.000254 1.08E+07          0              8 
Mass Up 0.000268 1.00E+07   5.512              0 

Mass Up, Mod 0.000268 9.20E+06   5.512             -8 
Down 

Mass Up, Mod Up 0.000268 1.08E+07   5.512              8 

Solution Value              Percentage Difference 
Mass       Modulus   Mass   Modulus      DV 

Combo 
MAC 

Mass Down 0.00024 1.00E+07    -5.71              0 M1 only 4 
Mass Down, Mod 0.00024 9.20E+06    -5.35       -8.05 M1 + K1 4 

Down 
Mass Down, Mod 0.00024 1.08E+07    -5.51          7.99 M1 + K1 4 

Up 
Mod Down 0.000254 9.19E+06          0       -8.11   K1 only 4 

Mod Up 0.000254 1.08E+07          0           7.9  K1 only 4 
Mass Up 0.000268 1.00E+07   5.354              0  M1 only 4 

Mass Up, Mod 0.000268 9.20E+06   5.551        -8.01  M1 + K1 4 
Down 

Mass Up, Mod Up 0.000268 1.08E+07     5.63         7.95 M1 + K1 4 

Table A-8 Test Case 8 Numerical Results 
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APPENDIX B. COMPOSITE BEAM SPECIFICATIONS 

A.       PHYSICAL DIMENSIONS AND PROPERTIES 

The composite beam used for the Chapter HI computer simulations was patterned 

after sample test pieces. The beams are made of a continuous carbon fiber/epoxy. The 

dimensions and the mass of the beam were measured. The original Young's modulus 

value was the value calculated in Reference (14). The beam orientation for the 

simulations was as depicted in Figure B-l. The degrees of freedom for the beam were 

vertical translation, upward in the figure, and rotation around a vector out of the plane of 

the page. 

D: 7 
w 

L = 4 feet D = 0.2911 inches W = 5.723 inches 

Figure B-l Composite Beam 

The original physical properties assumed for the beam were: 

Young's modulus       E = 6.33e6    PSI 
mass density p = 0.0001328 lbf-sec2/in4 

Young's modulus was updated using the optimization procedure and comparison to the 

undamaged beam's dynamic response. The updated value was: 

Young's modulus       E = 6.76 e 6    PSI 
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B.        DYNAMIC RESPONSE 

The system natural frequencies predicted by the finite element model are: 

Mode 1 28.96 Hz 
Mode 2 79.85 Hz 
Mode 3 156.6 Hz 
Mode 4 258.9 Hz 
Mode 5 386.9 Hz 
Mode 6 540.5 Hz 
Mode 7 719.8 Hz 
Mode 8 924.8 Hz 
Mode 9 1155.6 Hz 

The mode shapes predicted by the finite element are included in Figures B-2 through B- 

10. 

Mode Shape 1 

10 15 20 25 30 
Node 

35 40 45 50 

Figure B-2 Composite Beam Analytical Mode Shape 1 
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Mode Shape 2 
0.3 

Figure B-3 Composite Beam Analytical Mode Shape 2 

-0.25 i i_ 

35 40 45 50 

Figure B-4 Composite Beam Analytical Mode Shape 3 
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Mode Shape 4 

20 25 30 
Node 

Figure B-5 Composite Beam Analytical Mode Shape 4 

Mode Shape 5 
0.2 

20 25 
Node 

Figure B-6 Composite Beam Analytical Mode Shape 5 
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Figure B-7 Composite Beam Analytical Mode Shape 6 
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Mode Shape 8 

Figure B-9 Composite Beam Analytical Mode Shape 8 

0.2 r 
Mode Shape 9 

-| 1 1 1 1 T" 

0.1 

_o 
o 
a> 

"Hi 
a      Oh 
CD .> 

tr 

-0.1 

-0.2i: 

Figure B-10 Composite Beam Analytical Mode Shape 9 
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APPENDIX C. EXPERIMENTAL SETUP 

The experimental setup involved the selection of test equipment and of test 

settings. The following equipment and software was used for measurement of the test 

pieces dynamic responses and signal processing or analysis: 

• PCB load cell 

• PCB accelerometers 

• PCB Model 483A Amplifier 

• Zonic Workstation 7000 Signal Analyzer 

• HP Series 700 computer 

• IDEAS Master Series 2.1 Software 

Figure C-l depicts the experimental setup. Calibration data for the measurement 

equipment is included on the following pages. 

Test Piece 

Acceleromete 

Impact Hammer 
with Load Cell 

Ch.2 

Amplifier 

Ch.1 

Ethernet 

Cable 

HP 700 Computer 

Zonic Workstation 

Figure C-l Experimental Setup 
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PCB CALIBRATION CERTIFICATE 
pro 
PIEZOTRONICS 

IMPULSE FORCE HAMMER 

Model Nc. 0B6B03  

Serial No.  _ 2194 

Range 0~500 |b 

Linearity error <l.f 

Discharge Time Constant  2000    s 

Output Impedance _ 

Output Bias   9 • 1 

.ohms 

. volts 

737/236305 

Customer:     N/A^L-    PöS I &QflQl»Ufc 

SCHOOL-  

Invoice No.: 

3S77L 

Calibration Specification Ml L-STD 45662 

f~ <??-&(* 
Traceable toJJBS through  

Initials    f'fl  Date: 

Accelerometer: Model No.      302R07     Serial No Z£!Z_ Sens.      9-91   mV/g 

Pendulous Test Mass * • 05      11>   ( iZJLgram) including accelerometer 

Hammer Sensitivity: 

CONFIGURATION Tip PLRSTIC/VINYL PLRSTIC/VINYL 

Extender NONE STEEL 

SCALING FACTOR Ib/g 1.03 0.98 
(SENSITIVITY RATIO) 

(SEE  NOTE) 

Accel/Force (N/ms-2) 0.47 0.44 

mV/lb 9.59 10. 1 

HAMMER - 
SENSITIVITY 

(mV/N) 2.15 2.26 

NOTES: 

1. The sensitivity ratio (Sa/Sf) is the scaling factor for converting structural transfer measurements into engineering 
units.   Divide results by this ratio. 

2. Each specific hammer configuration has a different sensitivity. The difference is a constant percentage, which 
depends on the mass of the cap and tip assembly relative to the total mass of the head. Calibrating the specific hammer 
structure being used automatically compensates for mass effects. 

Effective mass 0.265 with 302A07 attached and vinyl capped plastic tip. 

PCB PIEZOTRONICS, INC.    3425 WALD6N AVENUE    OEPEW. NEW YORK 14043-2495    TELEPHONE 716-684-0001  TWX 710-263-1371 
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@=s=a   (C 
PerlSA-RP37.2 

Model No. ■tffittM 

Serial No. 117R7 

PO No.                                  Cust 

Calibration traceable to NIST thru Project No. B22/2511B1-33 

CALIBRATION DATA 

Voltage Sensitivity 96.3 mV/g 

Transverse Sensitivity      £5.0 % 

Resonant Frequency        >_ 7 kHz 

Time Constant      (NOM.)    B.5 s 

Output Bias Level 9.1 V 

e@5© 

ICP* ACCELEROMETER 
with buill-in electronics 

Calibration procedure is in compliance with 
MIL-STD-45662A and traceable to NIST. 

KEY  SPECIFICATIONS 

Range                50 ±g 

Resolution          0.001 g 

Temp. Range      0/+150 °F 

METRIC CONVERSIONS: 

ms? = 0.102 g 

°C = 5/9 x (»F -32) 

Reference Freq 

Frequency          Hz 10 15 30 50 100 300 500 1000 2000 

Amplitude Deviation   % 3.4 2.4 1.8 .8 0.0 -.9 -.9 -.e 2.5 

h3dB 

Amplitude 

Deviation 

-3 dB 

PCB 

FREQUENCY RESPONSE 

0 1 a D                 F requen cy in Hen z c 0 0 10 000 

Piezotronics, Inc. 3425 Waiden Avenue Depew, NY 14043-2495 USA 
716-684-0001 Calibrated by 

Date  2/17/94 

CODE: CC-ENG 
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Calibration   ^LJata 
ACCELEROMETER MODEL   225BR-10 SERIAL NO. BNB 1 

Sensitivity        18.10  mV/q(a>    ma   Hz,    m  g's pK 

MAXIMUM TRANSVERSE SENSITIVITY: 

DEV X FREQUENCY RESPONSE 

1 
1 1 

20 

  IR 

5 

BX 

i 

j 

-5 

10 

i 
i , 

i 
10 100 1K 

FREQUENCY IN Hz 

DEV dB 

40 

20 

0dB 

-20 

10K 50K 

J01 ; 

^ A. 
ENDEVCO Date. 

By. 
All calibrations are traceable to the National Bureau o( Standards and in accordance with MIL-STD-45662 This 
certifies that this accelerometer meets all tue performance, environmental and physical characteristics listed in 
Endevco" specifications 
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Calibration   Ujata 
ACCELEROMETER MODEL  zz3m ,10 SER1AL N0 ^ 

Sensitivity _    10,! 2   mV<fl @ ^^ Hz _^ g.$ p(< 

HRXIHUM   TRANSVERSE  SENSITIVITY, ,   a   ,, 

DEV    X 
FREQUENCY RESPONSE 

2B    -- __ 

IB 

5      --   .   -~ 
/ m    -- == = = = 

-5     -- 

-IB   - - 

I 
-- 

~ 
10 100 1K 

I I 

DEV  dB 

<B 

2B 

BdB 

10K 50K 

FREQUENCY IN Hz 

Dale. 

By_ 
EMDEVCO 

:ewiinMn.-STD-4566? Tins 
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APPENDIX D. AIRPLANE MODEL SPECIFICATIONS 

A.       PHYSICAL DIMENSIONS AND PROPERTIES 

The airplane model used for testing consisted of three separate pieces joined 

together with fasteners. The three pieces are the wing, the tail, and the fuselage. The 

fuselage and the wing were single continuous pieces. The tail had two risers welded to the 

horizontal stabilizer. There were also two attachment fittings attached to the fuselage. The 

dimensions and mass of the airplane were measured. Piece dimensions and masses are 

included in Table D-l. 

Name Description Dimensions Density 
(Inches) (lbf*sec2/in4) 

Wing Rectangular Plate 21x6.02x0.25 0.000254 
Body Square cross section beam 1 x 1 x 24.25 0.000264 
Tail Horizontal rectangular plate 8.97 x 2.98 x 0.25 0.000397 

Riser Vertical rectangular plate 1.63x2.71x0.25 

Table D-l Airplane Model Dimensions 

The Young's modulus for all of the pieces was assumed to be 10 e 6. 

B.        DYNAMIC RESPONSE 

The configuration of the experimental excitation points is included as Figure D-l. 

The responses of the structure were measured at the starboard forward wing point and 

after port tail point. The experimentally obtained mode shapes are included as Figures D- 

2 through D-l 1. 
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Figure D-l Airplane Experimental Data Points 
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Figure D-2 Airplane Experimental Mode Shape 1 
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Figure D-4 Airplane Experimental Mode Shape 3 
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Figure D-6 Airplane Experimental Mode Shape 5 
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Figure D-8 Airplane Experimental Mode Shape 7 
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Figure D-10 Airplane Experimental Mode Shape 9 
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APPENDIX E. AIRPLANE FINITE ELEMENT MODEL 

The finite element model built to study the airplane model was constructed with 

the IDEAS simulation software. The physical dimensions of the body, wing and tail were 

used to define the dimensions for the finite element model. The model consisted of 237 

nodes, 200 elements, and two lumped masses. The wing and tail are represented by 174 

thin shell elements. The tail risers were modeled to be the same width as the tail although 

that is not the case. The fuselage was represented by 26 beam elements. The beam 

elements were offset from the nodes to simplify the representation of the connection to the 

wing. The offsetting of the beam elements allowed the use of the same nodes for both 

wing elements and body elements. The two lumped masses represented the attachment 

bolts in the fuselage. Figure E-l depicts the finite element model of the airplane. The first 

ten flexible modes of vibration were predicted by the model. The mode shapes predicted 

by the finite element model are included as Figures E-2 through E-l 1. 

The model was used to solve for the predicated frequencies of all of the candidate 

solutions during model update. Each set of design variable changes were entered and new 

predictions run. The frequencies predicted, and the error from the experimental values are 

included in Table E-l. 
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Figure E-l Airplane Finite Element Model 
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Figure E-2 Airplane Analytical Mode Shape 1 

137 



8£I 

Z adeqs spoj^j IBOI^IBUV ^ueykvy £-3 3jn§ij 



%l 

Mi 

.s.sss -: 
«3 

r?F 

ft 

:FE 
s FfC^t' 

Figure E-4 Airplane Analytical Mode Shape 3 
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Figure E-8 Airplane Analytical Mode Shape 7 
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Figure E-10 Airplane Analytical Mode Shape 9 
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Update 1-8 Design Variables, 8 Frequencies (Modes 2 + 9 omitted) 

Update 2-10 Design Variables, 8 Frequencies (Modes 2 + 9 omitted) 

Update 3-7 Design Variables, 9 Frequencies (Mode 9 omitted) 

Update 4-5 Design Variables, 10 Frequencies 

AIRPLANE MODEL OPTIMIZATION 

FREQUENCY COMPARISON 

EXPERIMENTAL ORIGINAL UPDATE1 UPDATE2 UPDATE3 UPDATE4 
103.906 96.7507 103.23 103.068 102.563 104.081 
128.125 126.072 134.18 134.289 133.197 128.326 
140.625 135.637 140.76 140.695 140.29 131.579 
223.047 217.966 228.13 228.594 228.445 220.362 
272.266 268.562 279.77 281.173 282.574 286.383 
335.156 293.406 322.9 324.807 320.417 325.954 
355.469 336.579 352.1 355.239 354.135 356.173 
383.984 361.009 381.03 382.403 380.726 373.172 
404.297 416.758 434.63 434.55 433.12 404.904 
553.125 518.864 529.25 533.166 548.772 553.945 

PERCENTAGE ERROR 
ORIGINAL UPDATE1 UPDATE2 UPDATE3 UPDATE4 

-6.88632 -0.65059 -0.8065 -1.29251 0.168421 
-1.602341 4.725854 4.810927 3.958634 0.156878 
-3.547022 0.096 0.049778 -0.23822 -6.43271 
-2.277995 2.278892 2.48692 2.420118 -1.20378 
-1.360434 2.756128 3.271433 3.786003 5.185003 
-12.45689 -3.6568 -3.08782 -4.39765 -2.74559 
-5.314106 -0.94776 -0.0647 -0.37528 0.198048 
-5.983322 -0.7693 -0.41174 -0.84847 -2.81574 
3.08214 7.502653 7.482865 7.129165 0.150137 

-6.194079 -4.31638 -3.60841 -0.78698 0.148249 

Average error (abs) 4.870465 2.770037 2.608108 2.523305 1.920456 
MAC Sum 9.4293 9.4991 9.508 9.5112 9.5734 

Table E-l Airplane Update Frequency Comparison 
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APPENDIX F. COMPOSITE BEAM TEST DATA 

Both the undamaged and damaged composite beams were tested to obtain the 

experimental dynamic responses. The excitation force was applied at 25 points along the 

beam. These points corresponded to locations of finite element model nodes. Figure F-l 

depicts the data point locations. Figures F-2 through F-10 are the first nine mode shapes 

for the damaged beam as determined from the experimental data and IDEAS software. 
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Figure F-l Composite Beam Excitation Points 
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Figure F-2 Composite Beam Experimental Mode Shape 1 
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Figure F-4 Composite Beam Experimental Mode Shape 3 
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Figure F-10 Composite Beam Experimental Mode Shape 9 
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APPENDIX G. STEEL BEAM SPECIFICATIONS 

A. PHYSICAL DIMENSIONS AND PROPERTIES 

A steel beam was used to verify the damage localization procedure. The 

dimensions and the mass of the beam were measured. The original Young's modulus was 

assumed to be equal to a standard value for steel. The beam orientation for the 

simulations was as depicted in Figure G-l. The degrees of freedom for the beam were 

vertical translation, upward in the figure, and rotation around a vector out of the plane of 

the page. 

n f I 

I L I w 

L = 3.98 feet D = 0.625 inches W = 1.125 inches 

Figure G-l Steel Beam 

The original physical properties assumed for the beam were: 

Young's modulus       E = 30 e 6       PSI 
mass density p = 0.00072    lbf-sec2/in4 

Young's modulus was updated using the optimization procedure and comparison to the 

undamaged beam's dynamic response. The updated value was: 

Young's modulus        E = 28.61 e 6 PSI 

B. DYNAMIC RESPONSE 

The damaged beam was tested to obtain the experimental dynamic 

responses. The excitation force was applied at 25 points along the beam. These points 
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corresponded to locations of finite element model nodes. Figure G-2 depicts the data point 

locations. Figures G-3 through G-l 1 are the first nine mode shapes for the damaged beam 

as determined from the experimental data and IDEAS software. 
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Figure G-4 Steel Beam Experimental Mode Shape 2 
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Figure G-6 Steel Beam Experimental Mode Shape 4 
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Figure G-10 Steel Beam Experimental Mode Shape 8 
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APPENDIX H. COMPUTER CODE 

The following is a list and a brief description of MATLAB routines employed in 

this thesis. The different problems used similar routines modified to account for the test 

piece specifics and the application: 

• FEMOD.M - develops finite element model and solution for a beam. Used to develop 

the beam finite element models and the simulated experimental data. 

• GLOOPT.M - runs optimization routine for model updating and returns results. This 

program can be modified to run for the beam or any other model. 

• DVMAT.M - develops the 2-level factorial combination matrix. 

• OPTBEAM.M - inputs optimization process parameters such as limits and search 

method. 

• OBJVAL.M - contains the objective function and constraints for optimization. 

• CHECKWNM - calculates updated model natural frequencies and mode shapes for 

the beam trials for solution evaluation. 

• CBLOC.M - divides designated region into sectors and runs localization routine for 

each sector. 

• MODCOMP.M - calculates the Modal Assurance Criteria for active modes. 

• DIRECTM - does direct pseudo-inverse solution for the steel beam damage case. It 

also contains the reduction/expansion logic. 

The codes are included in the following pages. 
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FEMOD.M 

% develops finite element model for a beam 

function [omega,T,gamma]=femod(dv) 

nel=8; 
nn=nel+l;    % nn - number of nodes 
dof=nn*2;     % dof - number of degrees of freedom 

% input beam dimensions 

lt=10; 
w=3; 
d=10; 

% calculate needed parameters 

le=lt* 12/nel;    % le - element length 
ar=w*d; % ar - cross sectional area 
ve=ar*le;       % ve - element volume 
Iner=w*dA3/12;   % Iner - moment of Inertia 

% Construct geometric properties matrices 

kel=[12    6*le    -12     6*le; 
6*le 4*leA2 -6*le   2*leA2; 
-12   -6*le    12    -6*le; 
6*le 2*leA2 -6*le  4*leA2]; 

ke=(Iner/leA3)*kel; 
mel=[156    22*le   54     -13*le; 

22*le 4*leA2   13*le   -3*leA2; 
54     13*le    156    -22*le; 
-13*le-3*leA2 -22*le 4*leA2]; 

me=(ve/420)*mel; 

% construct global matrices 

kglo=zeros(dof,dof); 
mglo=zeros(dof,dof); 

% properties for the different elements (assumed homogenous) 

forj=l:nel 
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mod(j)=dv(l); 
rhoG)=dv(2); 

.   end 

% designate element connectivity 

for i=l:nel 
con=i+l; 
cl=(i*2)-l; 
c2=con*2; 
kglo(cl :c2,cl :c2)=kglo(cl :c2,cl :c2)+mod(i)*ke; 
mglo(cl :c2,cl :c2)=mglo(cl :c2,cl :c2)+rho(i)*me; 
end 

% set boundary conditions - zero the matrix elements which are 
% constrained. Beam is cantilevered. 

kact=kglo(3: dof, 3: dof); 
mact=mglo(3 :dof,3 :dof); 

% solve for natural frequencies and mode shapes 

[phi,lbd]=eig(mact\kact); 
forj=l:dof-2; 

lambda(j)=lbdG,j); 
end 

freqs=(sqrt(lambda)); 
[wn,I]=sort(freqs); 
forj=l:dof-2; 

shnorm(:,j)=phi(:,Iö)); 
end 

mtil=shnorm,*mact*shnorm; 
fori=l:dof-2; 

alpha(i)=l ./sqrt(mtil(i,i)); 
shapes(:,i)=shnorm(:,i)*alpha(i); 
end 

% compute sensitivities and Cauchy ratio equivalent 

numdv=2*nel; 
sens=zeros(dof-2,numdv); 
gamma=zeros(dof-2,numdv); 
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counter=l; 
fork=l:numdv 

tm=zeros(dof,dof); 
tk=zeros(dof, dof); 
ifcounter<=nel 

con=counter+l; 
cl=(counter*2)-l; 
c2=con*2; 
tk(cl:c2,cl:c2)=ke; 

else 
r=counter-numdv/2; 
con=r+l; 
clKr*2)-l; 
c2=con*2; 
tm(cl:c2,cl:c2)=me; 
end 

tkact=tk(3:dof,3:dof); 
tmact=tm(3: dof, 3: dof); 
forg=l:dof-2 

% sensitivity calculation 

mat=tkact-wn(g)A2 *tmact; 
delw=shapes(:,g)'*mat*shapes(:,g); 
sens(g,k)=sens(g,k)+delw; 

% Cauchy ratio calculation 

forr=l:dof-2 
ifr=g 

gam=0; 
else 

gam=-(shapes(:,r)'*mat*shapes(:,g))A2/((wn(g)A2- 
wn(r)A2)*delw); 

end 
gamma(g,k)=gamma(g,k)+gam; 

end 
mat=zeros(dof-2,dof-2); 

end 
counter=counter+1; 

end 

omega:=wn(l:4); 
T=sens(l:4,:); 
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GLOOPT.M 

% Perform multiple iterations of optimization program for different combinations 
% of design variables. This particular code is set up to do the 8 element beam problem 
% with up to 16 design variables. 

global size block Tb dvO dvsc n dwect omega measom prop 

diary 

% Determine Design variable matrix for iterations. 

n=4; 
block=16/n; 
bimat=dvmat(n); 

% Calculate FE model and Experimental Values 

prop=[10e6 .000254]; 
[omega, T,cauchy]=femod(prop); 
load moddat 
omega=omega 
prodv=[9.2e6 .000254]' 
[measom,measphi]=expmod(prodv); 
measom=measom 
startpt=[10e6 .000254]'; 

% solve optimization problem for each set of design variables 

count=n/2; 
nrow=2An-l; 
fori=l:nrow 

dv=zeros(n,l); 
stpt=zeros(n,l); 
dwect=bimat(i,:) 
Tact=T; 
cauchyact=cauchy; 
ckdv=prodv; 

% generate dv vector and initial values for the iteration. Also eliminate terms to account 
% for which design variables are in used 

forj=l:n 
ifj<=count 
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else 

ifdwect(j)=l 
dv(j)=prop(l); 
stpt(j)=startpt( 1 )-prop( 1); 

else 
dv(j)=0; 

end 

ifdwect(j)=l 
dv(j)=prop(2); 
stpt(j)=startpt(2)-prop(2); 

else 
dv(j)=0; 

end 
end 

end 

% eliminate unneeded dv information for the iteration 

forj=n:-l:l 
ifdwect(j)=0 

dvö)-[]; 
stpt(j)=[]; 
Tact(:,G-l)*block+l:j*block)=[]; 
cauchyact(:,(j-l)*block+l :j*block)=[]; 
ckdv(j)=[]; 

end 
end 

% scale design variables 

scale=min(dv)/max(dv); 
size=length(dv); 
size l=length(Tact( 1,:)); 
sc=zeros(sizel); 
for j=l: size 1 

sc(jj)=i; 
end 
for j=l: size 

ifdv(j)/prop(l)=l 
for k=(j-l)*block+l :j*block 

sc(k,k)-scale; 
end 

end 
end 
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Tb=Tact*inv(sc); 

% scale design variable vector and starting point vector 

dvsc=zeros(size); 
for j=l: size 

ifdv(j)/prop(l)=l 
dvsc(j,j)=scale; 

else 

dvscQJH; 
end 

end 
dvO=dvsc*dv; 
deldvO=dvsc*stpt; 
diary 

% enter constrained optimization routine 

[optdv,senvexp,senveig,eigvexp,mac]=optbeam(dv,deldvO,measphi); 
diary 

% develop vector to calculate Cauchy ratio 

ddv=zeros(size*block, 1); 
for 1=1: size 

forj=l:block 
start=(l-l)*block; 
ddv(start+j)=optdv(l)-dv(l); 

end 
end 

% print out solution data 

optdv=optdv 
data=[senvexp senveig eigvexp] % this is frequency comparison data 
pctdiflE=(optdv-ckdv)./ckdv* 100 
macsum=sum(mac); 
for j=l :length(ddv) 

cauchyrat(:j)=cauchyact(:,j)*ddvö); 
end 

ratio=max(abs(cauchyrat( 1:4,:))); 
dvposit=l; 
forj=l:n 

ifdwect(j)=l 
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output(ij)=optdv(dvposit); 
dvposit=dvposit+1; 

else 
output(ij)=0; 

end 
end 
output(i,n+l)= =macsum; 

end 
diary off 
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DVMAT.M 

% develops matrix to track design variable combinations. Returns a matrix with ones 
% and zeros in a binary type code. 

function [bimat]=dvmat(n) 

nrow=2An; 
bimat=zeros(nrow,n); 
for i=l:n 

counter=2A(i-l); 
part 1 =zeros(counter, 1); 
part2=ones(counter, 1); 
fill( 1: counter, 1 )=part 1; 
fill(counter+l :counter*2, l)=part2; 
size=length(fill); 
for j=1: nrow/(2 * counter) 

bimat((j-1 )*size+1 :j * size,i)=fill; 
end 

end 
bimat(l,:)=[]; 
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OPTBEAM.M 

% provides information needed by the optimization process 

function[optdv,senvexp,senveig,eigvexp,mac]=optbeam(dv,deldvO,expsh) 

global dvsc measom newom prop 

% sets limits and defines information for the constrained optimization routine 

U=-.l*dv; 
ul=.l*dv; 
options=[]; 
options(l)=l; 
options(2)=le-8; 
options(3)=le-8; 
options(6)=2; 
options(14)=1000; 

% enters the optimization routine 

[optdel]=constr('objvar,deldvO,options,ll,ul); 

% scales the solution back to original basis and adds to original value 

optdel=dvsc\optdel; 
optdv=dv+optdel; 

% updates FEM 

[eigomega,newphi]=checkwn(optdel,prop); 

% compares frequencies Sensitivity update vs experimental, Sensitivity update vs 
% eigen re-solve, and eigen re-solve vs experimental (percentage basis) 

senvexp=max(abs((measom-newom)./measom))* 100; 
senveig=max(abs((eigomega-newom)./eigomega))* 100; 
eigvexp=max(abs((measom-eigomega)./measom))* 100; 

% calculates MAC 

[mac]=modcomp(expsh,newphi); 

182 



OBJVAL.M 

% computes objective function and constraint values 

function [value, con]=objval(deldv) 

global size block Tb newom measom dvO omega 

% expands a single dv value up to number of linked variables, i.e. IE value up to 8 
% elements 

m=length(deldv); 
ddv(m*block, l)=zeros; 
for i=l:m 

forj=l:block 
ddv((i-l)*block+j)=deldv(i); 

end 
end 

% calculates sensitivity update 

diff=Tb*ddv; 
newom=sqrt(omega.A2+diff); 

% calculates Objective function 

subval 1 =5 * sum(abs((measom-newom)./measom)); 
subval2=block*sum(abs(deldv./dv0)); 
value=subval 1 +subval2; 

% calculates constraint value (none in this case) 

con=[]; 
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CHECKWN.M 

% calculates updated frequencies and mode shapes based on optimization solution 

function [wnnew,shapes]=checkwn(deldv,dv) 

global n block dwect 

% define beam parameters (same as baseline model 

nel=8; 
nn=nel+1;    % nn - number of nodes 
dof=nn*2;    % dof - number of degrees of freedom 
lt=10; 
w=3; 
d=10; 

% expands dv vector up to fill 16 values ( 8 for E, 8 rho) 

fori=l:n 
forj=l:block 

ifi<=n/2 
num=(i-1 )*block+j; 
mod(num)=dv(l); 

else 
num=(i-n/2-l)*block+j; 
rho(num)=dv(2); 

end 
end 

end 

% adds change in design variables to original values 

count=l; 
for w=l :n 

if dwect(w)=l 
ifw<=n/2 

for j=(w-l)*block+l :w*block; 
mod(j)=mod(j)+deldv(count); 

end 
else 

q=w-n/2; 
for j=(q-l)*block+l :q*block; 
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rho(j)=rho(j)+deldv(count); 
end 

end 

count=count+l; 
end 

end 

le=lt* 12/nel;   % le - element length 
ar=w*d; % ar - cross sectional area 
ve=ar*le;       % ve - element volume 
Iner=w*dA3/12;   % Iner - moment of Inertia 

% calculates elemental mass and stiffness matrices 

ke=[12   6*le   -12    6*le; 
6*le 4*leA2 -6*le   2*leA2; 
-12   -6*le    12     -6*le; 
6*le 2*leA2 -6*le  4*leA2]; 

ke=(Iner/leA3)*ke; 
me=[156   22*le    54    -13*le; 

22*le 4*leA2   13*le   -3*leA2; 
54     13*le    156    -22*le; 
-13*le-3*leA2 -22*le 4*leA2]; 

me=(ve/420)*me; 

% assembles global matrices 

kglo=zeros(dof,dof); 
mglo=zeros(dof,dof); 
ori=l:nel 

con=i+l; 
cl=(i*2)-l; 
c2=con*2; 
kglo(cl :c2,cl :c2)=kglo(cl :c2,cl :c2)+mod(i)*ke; 
mglo(cl :c2,cl :c2)=mglo(cl :c2,cl :c2)+rho(i)*me; 

end 

% define boundary conditions 

kact=kglo(3:dof,3:dof); 
mact=mglo(3 :dof,3 :dof); 

% solve eigen problem 
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[phi,lbd]=eig(mact\kact); 
forj=l:dof-2; 

lambdaö)=lbdö,j); 
end 

freqs=(sqrt(lambda)); 
[wn,I]=sort(freqs); 
forj=l:dof-2; 

shnorm(:,j)=phi(:,I(j)); 
end 

mtil=shnorm' * mact * shnorm; 
fori=l:dof-2; 

alpha(i)=l ./sqrt(mtil(i,i)); 
shapes(:,i)=shnorm(:,i)*alpha(i); 
end 

wn=wri: 
wnnew=wn(l:4); 
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CBLOC.M 

% Perform multiple iterations of optimization program for composite beam 
% to localize damage 

global Tbca dv anfreq exfreqd newfreq 

% Call model data 

load cb8;        % composite beam data file 
anfreq=omega/2/pi; 
load('exfreqd. dat') 
load cddamdat; % damaged composite beam data file 

% solve optimization 

dv=6.7576e6; 
count=length(anfreq); 
c=8*piA2; 

% convert sensitivities from delta lambda to delta frequency 

for i=l: count 
Tb(i,:)=T(i,:)/c/anfreq(i); 
end 

% Enter the section of the beam to be investigated 
% there must be at least 3 elements 

le=input(Enter the first element of the region of interest -'); 
re=input('Enter the last element of the region of interest -'); 

% sum the sensitivities for the three sections 

numel=re-le+l; 
step=fix(numel/3); 
leftover=rem(numel,3); 
ifleftover=0 

lb(l)=le; 
lb(2)=le+step; 
rb(l)=lb(2)-l; 
lb(3)=lb(2)+step; 
rb(2)=lb(3)-l; 
rb(3)=re; 
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elseifleftover=l 
lb(l)=le; 
lb(2)=le+step; 
rb(l)=lb(2)-l; 
lb(3)=lb(2)+step+l; 
rb(2)=lb(3)-l; 
rb(3)=re; 

elseifleftover=2 
lb(l)=le; 
lb(2)=le+step+l; 
rb(l)=lb(2)-l; 
lb(3)=lb(2)+step; 
rb(2)=lb(3)-l; 
rb(3)=re; 

end 
lb(4)=le; 
rb(4)=re; 

% sum elements of sensitivity matrix for the three sections and 
% the whole sector 

temp=Tb(:,lb(l):rb(l))'; 
iflb(l)=rb(l) 

Tbc(:,l)=temp'; 
else 

Tbc(:,l)=sum(temp)'; 
end 
temp=Tb(:,lb(2):rb(2))'; 
iflb(2)=rb(2) 

Tbc(:,2)=temp'; 
else 

Tbc(:,2)=sum(temp)'; 
end 
temp=Tb(:,lb(3):rb(3))'; 
iflb(3)==rb(3) 

Tbc(:,3)=temp'; 
else 

Tbc(:,3)=sum(temp)'; 
end 
Tbc(:,4)=Tbc(:,l)+Tbc(:,2)+Tbc(:,3); 

% solve the optimization problem for each section 

fori=l:4 
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Tbca=Tbc(:,i); 
deldvO=0; 

% enter optimization (values the same as previous applications) 

[optdv,ufreq,pctdiff,mcf]=dlopt(dv,deldvO,xshp,lb(i),rb(i)); 

solvec(i)=optdv; 
update(:,i)=ufreq; 
pctd(:,i)=pctdiff; 
modalc(:,i)=mcf; 
end 

% print results, DV values and MAC sums 

solvec=solvec 
modalc=modalc 

% add different combinations of mode MAC's 

total(l, 
total(2, 
total(3, 
total(4, 
total(5, 
total(6, 
total(7, 
total(8, 
total(9, 

:sum(modalc); 
=sum(modalc(l 

sum(modalc(5 
sum(modalc(l 

=sum(modalc(3 
=sum(modalc(5 
=sum(modalc(7 
=sum(modalc(l 
~sum(modalc(3 

A )); 
:8, )); 
:2, )); 
A, )); 
:6, )); 
:8, )); 
:6, )); 
:8, )); 
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MODCOMP.M 

% calculated modal assurance criterion 

function [factor]=modcomp(old,new); 

factor=zeros(8,l); 
fori=l:8 

top=old(:,i)'*new(:,i); 
bl=old(:,i)'*oId(:,i); 
b2=new(:,i)'*new(:,i); 
factor(i)=topA2/(bl*b2); 

end 
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DIRECT.M 

% this function solves for design variable difference with the pseudo-inverse method 

function [optdv,mcf]=direct(dv,Tbca,olshp,lb,rb) 

global anfreq exfreqd aset oset Ttype mact kact compshp redshapes 

% solve for dv value 

delfreq=exfreqd-anfreq; 
optdel=Tbca\delfreq; 
optdv=dv+optdel; 

[eigomega,mupd,kupd,upshp]=ckwn(optdel,lb,rb); 

% select transformation matrix method 

%[kstat,mstat,T_static]=fstatic_tam(kupd,mupd,oset,aset); 
[kstat,mstat,T_static]=firstam(kupd,mupd,oset,aset); 

% generate shape vectors 

count=length(aset); 
ndof=length(oset)+count; 

if Ttype==l     % for reduction of analytical to experimental size 

compshp=olshp; 
[wnred,red_shapes]=shgen(mstat,kstat); 

elseif if Ttype=2      % extraction method 

compshp=olshp; 
for i=l: count 

red_shapes(i, :)=upshp(aset(i),:)' 
end 

elseif if Ttype==3 % expand experimental up to analytical size 

%        [kstat 1 ,mstat 1 ,T_static 1 ]=fstatic_tam(kact,mact,oset,aset); 
[kstat 1 ,mstat 1 ,T_static 1 ]=firstam(kact,mact,oset,aset); 
compshp=upshp; 
phi_exp=T_staticl *olshp; 
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start=ndof-count; 
for i=l: count  % unpartitioning shape vector 

red_shapes(aset(i), :)=phi_exp(start,:); 
t=(i-l)*3; 
red_shapes(aset(i)+l :aset(i)+3,:)=phi_exp(t+l :t+3,:); 
end 

red_shapes(99,100)=[]; 

end 

eig=eigomega/2/pi; 
eigvexp=(eig-esfreqd)./exfreqd* 100; 

% calculating MAC 

[mcf]=modcomp(compshp,red_shapes); 
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APPENDIX I. IDEAS CONVERSION INFORMATION 

The IDEAS simulation software provides finite element modeling capability with a 

graphic end. The program allows the user to build and solve models. To allow for 

conversion between IDEAS and other software some conversions were necessary. The 

following will provide a walk through of those measures. 

A.       SENSITIVITY CONVERSION 

The equation developed for frequency sensitivities in Chapter II, Equation (2.11), 

defines the frequency sensitivity as a change in lambda per change in design variable. This 

was the method used in the MATLAB code. IDEAS on the other hand computes the 

frequency sensitivity on a change in frequency per change in design variable basis. The 

conversion from one to the other is developed as follows by substituting for lambda: 

a _a(w)'.=^^= * (u) 
cDV      SDV SDV v   'cDV 

= 87t2f-—7 (1.2) aDV        aov 

This allows the conversion of sensitivities on a lambda basis to a frequency basis. The 

other issue is the units of the denominator. IDEAS outputs sensitivities in the unit system 

designated within the model file, so if English units are designated the output file will be in 

English units. 

B.        MODE SHAPE NORMALIZATION AND MODAL MASSES 

IDEAS normalizes the output mode shapes in a different fashion than MATLAB. 

MATLAB normalizes mode shapes so that the magnitude of the modes shape vector is 

one. For the models used in this thesis, English units were used, so that the nominal units 
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of the mode shape vector were inches for deflection and radians for rotation. Modal mass 

is in lbf*sec2/in. IDEAS normalizes mode shapes so that the magnitude of the largest 

single element in the modal matrix is one. The program outputs the modes shapes in 

metric units, so that deflections are in meters and rotations are in radians. In order to 

convert MATLAB data to the same format as IDEAS data the following procedure is 

used: 

• convert active mass matrix from lbf*sec2/in to kg 

lbf * sec2 ,12in. 14.159kg (u) 

in ft        slug 

• convert translations in modal matrix from inches to meters (odd rows of 

matrix) 

in,25taa,_jn_ (I4) 

in       100cm 

• renormalize mode shape matrix so that largest term is one 

max^i) 

• Calculate modal mass with renormalized modal matrix and mass matrix 
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